D-A162 457 SPECIFICRTION TECHNOLOGV GUIDEBOOK(U) BOEING REROSPACE 1/3° e

" CO SEATTLE WA D R RDDLEMAN ET AL RUG 85 A
RADC-TR-85-135 F38682-84-C-88732

UNCLASSIFIED F/G 972

=
-

e
. L Cuna

oSl s
T
= flee
23 flas e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAKDS:1963-A
’

~vipn -y

]
%
3
i
1
ok

IME AIR DEVELOPMENT CENTER
Air Force Systems Command
Base, NY 13441.5700 |

Griffiss Alr Force

. o . .
g ts S

PR e te ey
S N VPR

-

'-feh'-:.‘qkag-gh.n-h.-.u_-su.-,v-kum.~.n)
R n,) .

ﬂ&mn b ¢ oiged ‘o 1£ you wish #h to be removed from the RADC

(1ing 11ist, of if the addresses is no longer employed by your organization,

_plesse notify RADC (COEE) Griffiss APB NY 13441-5700. This will assist us in

maintaining a current mailing list. |
Do not fitm cophlefthu rnpo’rt unless contractual obligations or notices
on a specific document requires that it be returned.

B AT P N el Sgt ail B
SORAR Y

a8 ey

R st A

O RIS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

40-4l62 457

REPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSIFICATION
INCLASSIFIED

1b. RESTRICTIVE MARKINGS
N/A

2a SECURITY CLASSIFICATIC ¥ AUTHORITY
N/A

e ————————————
3. DISTRIBUTION / AVAILABILITY OF. REPORT
Approved for public release; distribution

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING CRGANIZATION REPORT NUMBER(S)

N/A

unlimited.
5. MONITORING ORGANIZATION REPORT NUMBER(S)
RADC-TR-85-135

6a NAME OF PERFORMING ORGANIZATION

Boeing Aerospace Company

6b. OFFICE SYMBOL
(if applicable)

7a. NAME OF MONITORING ORGANIZATION

Rome Air Development Center (COEE)

6¢. ADDRESS (City, State, and 2IP Code)

P.0. Box 3999
Seattle WA 98124

7b. ADDRESS (City, State, and ZIP Code)
Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Rome Air Development Center

8b. OFFICE SYMBOL
(If applicable)
COEE

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F30602-84-C-0073

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

Criffiss AFB NY 13441-5700

PROGRAM PROJECT TASK WORK_UNIT
ELEMENT NO. |NO. NO. ACCESSION NO.
62702F 5581 22 13

11 TITLE (Include Security Classification)

SPECIFICATION TECHNOLOGY GUIDEBOOK

12 PERSONAL AUTHOR(S)

David R. Addleman, Margaret J. Davis, P. Edward Presson

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year. Month, Day)

5. PAGE COUNT

Final fFROM _Mar 84 1o Mar 85 August 1985 242
16. SUPPLEMENTARY NOTATION
N/A
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software Specification Methodology Guidelines
09 02 Software Specification Tools
Software Requirements Methodology, (See Reverse)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The specification Technology Guidebook is designed for Air Force technical managers. Using
its guidelines, software development project managers can select methodologies and tools

at the front-end of the software development life cycle that will not only benefit software
projects during system requirements, software requirements, and design phases, but also
during the remaining life-cycle phases.

The field of specification technology is in continual expansion. New methodology and tools
enter the marketplace weekly, while older ones mature or are adapted to accommodate different
computer hardware, CPU's, or languages. For this reason the guidelines are constructed in
modular form for easy inclusion of new methodologies and tools or revised descriptions of
old ones.

Further, the guidelines are designed for use by Air Force technical managers on projects

contracted to companies of varying software engineering practices.
ying 8 p

In general, the approach

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT

CJUNCLASSIFIED/UNLIMITED SAME AS RPT

{J oTic USERS

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a NAMZ OF RESPONSIBLE INDIVIDUAL
William E. Rzepka

(315) 3

22b. TELEPHONE (Includ, Ci 22 FF
séztl‘tbgfﬂrea ode) (3 RRD ('ICE(%ZB“%BE%L

83 APR edition may be used until exhausted
All other editions are obsolete.

DD FORM 1473, 84 mAR SECULRITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

incorporates MIL-STD-490 and meets the requirements of all DOD and service software
standards. The life cycle information is in accordance with AFR 800-14 and DOD-STD-
2167 standards.

The method by which the user selects methodologies and tools is based on the use of
rating tables. These tables have been carefully constructed to permit a compact
representation of many selection considerations. A more complete discussion of these
considerations can be found in the Final Report of RADC Contract F30602~-84-C-0073,
and can be studied as a companion volume to this guidebook.

The guidelines presented in this volume are the culmination of surveys of Air Force
missions, current technical literature (e.g., journals, conference proceedings, and
textbooks), discussions with specification technology developers, hands-on testing of
many methodology and tools software packages, hours of analysis, and some trial and
error approaches. These guidelines provide the Air Force with a simplified approach
to specification technology selection that will, for the majority of new projects,
allow the technical manager to select the methodology and tools that best suit his
needs.

18. Subject Terms (Continued).

Software Design Methodology

5 -
- A N g
T,
PP

At S A ATRE AE S

I

T e

B 7 € x_ 8

i

|l A

UNCLASSIFIED

~
~
L
. CI
Y

w Ve

B A ‘,_-..‘-«.
ANAd AN AT UAn N

.................

PREFACE

\The Specification Technology Guidebook provides guidelines for the selection of require-
ments and design specification methodologies appropriate to various software develop-
ment environments and various types of software. The guidelines cover the require-
ments analysis, architectural and detailed design phases. These guidelines are incor-
porated in a table-driven format that define increasingly thorough and formal levels of
specification based on a software project’s ssgnificance level. Significance level measures
the relative importance of an individual project based on considerations of quality,
software, and project.

The guidebook provides summary descriptions of specification methodologies. It includes
a method for selecting automated tools to support the selected methodologies. It
includes typical paragraphs that can be included in Air Force software development
statements-of-work to specify the use of specification methodologies by the contractor
during the requirements analysis and design phases of a contracted development.

Three example problems for C3I software development projects are included. A pnmary
consideration imposed on each example is compatibility with the Ada* programmlng
language. The other considerations used for system requirements and design of the C3I
problems were derived from actual requirements set forth in C3I RFP's, and working
knowledge of the requirements for C3] software and system projects gained by Boeing
Aerospace engineers during the last decade.

* Adais a trademark of the U.S. Department of Defense (Ada Joint Program Office).

. ..~_'TLI!:'V;1L~_ " e

TABLE OF CONTENTS

ABBREVIATIONS
1.0 SPECIFICATION TECHNOLOGY GUIDEBOOK
1.1 INTRODUCTION
1.2 OUTLINE OF SPECIFICATION TECHNOLOGY GUIDEBOOK
1.3 APPLICATIONS OF THE GUIDEBOOK
1.4 CONSIDERATIONS USED IN RATING REQUIREMENTS AND
DESIGN METHODOLOGIES AND TECHNIQUES
1.4.1 Concept Expressibility
1.4.2 Degree of Automated Support
2.0 HOW TO SELECT SPECIFICATION METHODOLOGIES
2.1 INTRODUCTION TO METHODOLOGY SELECTION
2.2 METHODOLOGY SELECTION PATHS
2.3 REQUIREMENTS METHODOLOGY SELECTION - Path 1
2.3.1 Step 1 -- Choose the Overall Significance Level (OSL)
2.3.2 Step 2 -- Select the Best-Fit Software Category
2.3.3 Step 3 -- Designate Candidate Methodologies
2.3.4 Step 4 -- Compare Scores for Candidate Methodologies
2.4 DESIGN METHODOLOGY SELECTION - Path 2
2.4.1 Step 1 -- Choose the Overall Significance Level (OSL)
2.4.2 Step 2 -- Select the Software Category
2.4.3 Step 3 -- Designate Candidate Methodologies
2.4.4 Step 4 -- Compare Scores for Candidate Methodologies
2.5 METHODOLOGY SELECTION - Path 3
2.6 OVERALL CONSIDERATIONS
2.7 C3] EXAMPLE USE OF GUIDELINES
2.7.1 PATH 1 C% EXAMPLE
2.7.1.1 Step 1 --Choose the Overall Significance Level (OSL)
2.7.1.2 Step 2 -- Select the Software Category
2.7.1.3 Step 3 -- Designate Candidate Methodologies
2.7.1.4 Step 4 -- Compare Scores for Candidate Methodologies
2.7.2 PATH 2 C3 EXAMPLE
2.7.2.1 Step 1 --Choose the Overall Significance Level (OSL)
2.7.2.2 Step 2 -- Select the Software Category
2.7.2.3 Step 3 -- Designate Candidate Methodologies
2.7.2.4 Step 4 -- Compare Scores for Candidate Methodologies
2.7.3 PATH 3 C% EXAMPLE

L)

el et fws B diats s e 4

2-13
2-16
2-16
2-16
2-24
2-24
2-27
2-27
2-31
2-36
2-36
2-36
2-39
2-39
2-39
2-43
2-43
2-44
2-46
2-46
2-49

[

,
:
.
T
y
~<.-‘<

s

3 i S}

: $Tale
21 N A
s B A YR
2

abah A 3

e PR O
T
e a e o

*,
..

o o’
A
)
’

-

...............

™ e e

EAR L o

TP PR L,
P} o v

NN
-d:*
N :
A TABLE OF CONTENTS - continued
vl
o Page
RN 2.7.4 Blank Worksheets 2-51
DY 3.0 HOW TO SELECT AVAILABLE AUTOMATED TOOLS 31
" 3.1 INTRODUCTION 31
. 3.2 THE SELECTION PROCESS 31
e 3.3 COMPARISON AND SELECTION PROCESS
- j.f FOR TOOL SET ALTERNATIVES 33
;:l:f 3.4 SELECTION PROCESS FOR GENERIC TOOLS 34
[4.0 METHODOLOGY AND AUTOMATED TOOLS DESCRIPTIONS 4-1
4.1 Organization of this Section 4-1
4.2 Methodology Description Format 41
SR 4.3 DSSD 4-7
B 4.4 HDM 4-13
o 4.5 SADT 4-19
e 4.6 SA/SD 4-24
e 4.7 SCR 4-30
o 4.8 SREM 4-36
L3 4.9 VDM 4-42
e 4.10 DCDS 4-47
b 4.11 JSD 4-51
4.12 PAISLey 4-56
= 4.13 SARA 4-61
o 4.14 USE 4-67
i 4.15 Tool Set Description Format 4-73
R 4.16 TAGS 4-78
) 4.17 ARGUS 11 4-83
N 4.18 EXCELERATOR 4-87
s 4.19 PROMOD 4-91
A 4.20 PSL/PSA 4-95
e 5.0 SOFTWARE ACQUISITION LIFE CYCLE 5-1
5.1 INTRODUCTION 5-1
= 5.2 AFR 800-14 SYSTEM ACQUISITION LIFE CYCLE 5-1
o 5.3 AFR 800-14 SOFTWARE DEVELOPMENT LIFE CYCLE 5-1
-\.;:- 5.4 DOD-STD-SDS COMPUTER SOFTWARE DEVELOPMENT CYCLE 5-4
o 5.5 RELATION OF METHODOLOGIES TO LIFE CYCLE PHASES 5-4
~a 6.0 SAMPLE PARAGRAPHS FOR STATEMENTS OF WORK 6-1
e 6.1 INTRODUCTION 6-1
i 6.2 TIGHTLY CONSTRAINED -- DIRECT SPECIFICATION 6-1
! 6.3 TIGHTLY CONSTRAINED -- SUBSET SPECIFICATION 6-2
o 6.4 MODERATELY CONSTRAINED SPECIFICATION 6-3
R 6.5 LOOSELY CONSTRAINED SPECIFICATION 6-3

~ -: i

-

4 e m,e_« a e
x w at
l‘f'b‘l,l,r p

[T
}'f'

APPENDICES
APPENDIX A: ARMAMENT
APPENDIX B: AVIONICS
APPENDIX C: C3I
APPENDIX D: SPACE
APPENDIX E: MISSION/FORCE MANAGEMENT
APPENDIX F: MISSILES

TABLE OF CONTENTS - continued

A-1
B-1
C-1
D-1
E-1
F-1

LIST OF FIGURES

Number Page :
o e
1-1 Guidebook Organization 1-2 'I:'-'_ p
2-1 Path 1 Overview 2-3 A
2-2 Significance Level Table 2-4
2-3 Methodology Selection Worksheet 2-5 .
2-4 Example Methodology Selection Worksheet 2-6 -
2- Example Use of Significance Level Table 2-8 o
2- Software Categories Table e
part 1 2-10 W
part 2 2-11 ;
part 3 2-12 T
2-7 Path 1 Match Table 2-14 L
2-8 Example Use of Path 1 Match Table 2-15 L
2-9 Path 1 Methodology Scores for OSL=0 2-17
2-10 Path 1 Methodology Scores for OSL=1 2-18 e
s 2-11 Path 1 Methodology Scores for OSL=2 2-19 NG
v 2-12 Path 1 Methodology Scores for OSL=3 2-20 -’-j:»
- 2-13 Example Use of Path 1 Methodology Tables 2-21 N
- 2-14 Path 2 Overview 2-22 ?_::.':
2-15 Path 2 Match Table 2-25 L]
! 2-16 Example Use of Path 2 Match Table 2-26 wss
2-17 Path 2 Methodology Scores for OSL=0 2-28 S
. 2-18 Path 2 Methodology Scores for OSL=1 2-29)
' 2-19 Path 2 Methodology Scores for OSL=2 2-30 S
2-20 Path 2 Methodology Scores for OSL=3 2-31 e
2-21 Path 3 Overview 2-32 =
2-22 Path 3 Capabilities and Ratings 2-34 Sy
2-23 Methodology List Table 2-35 s
2-24 C3I Path 1 Example
Use of Methodology Selection Worksheet 2-38
2-25 C3] Path 1 Example S
Use of Match Table 2-40 RS
2-26 C31 Path 1 Example
Use of Methodology Scores for OSL=1 2-41 D
2-27 C3I Path 2 Example Y
Use of Methodology Selection Worksheet 2-45 A
2-28 C3] Path 2 Example —3
Use of Match Table 2-47
2-29 C3I Path 2 Example
Use of Methodology Scores for OSL=3 2-48
2-30 C3[Path 3 Example
Use of Methodology Ratings Table 2-50 ;_}_4
v _'.:‘
. e e M ST T e Wt T T T e e e _"\

g g ¥) 4 v A te A R e ¥l ¢ an ~

Chalit LA et o i -l SAMIED i S RN S e oter S Y latta S 00 1 AL e Al G AT " G B SR A A AE el ek ath o d 0 -A 0.0 o .
Lt
RE

LIST OF FIGURES - continued
Page

Tool Selection Process 3-2
Generic Specification Tools

part 1 3-6

part 2 37
Rating Criteria for Generic tools

part 1 3-8

part 2 39
AFR 800-14 System Acquisition Life Cycle 5-2
AFR 800-14 Software Development Life Cycle 5-3
DoD-STD-SDS Software Development Life Cycle 5-5
Life Cycle Phase Coverage 5-6

vl
~ . - - -
o R N S . . . s T T T S NS
SRR . O R R R L T
PRCANIE SIS .- L . .- . B B . P T
P S R . e - LS S - - LR .
- a P A A B B By B a . A om ™ A WL S WA PS. O Ve A’..:"- - ‘__'ALIA"L“ L'-- ‘.L":A‘.IL"\' k1 :L' A L“- a "x -

AD
AFR
AFTI
ASD
ASSM
ATD
ATO
BMO
BSD
CAFMS
CINCSAC
COM
CPCD
CPCI
CPU
CRT
CSClI
CSOC
DCDS
DDC
DDL
DoD
DSSD
ELINT
GMB
HDM
HOL
HSL
ICBM
IUS
V&V
JINTACCS
JSD
JSTPS
LRU
AMDL
MIL
OFP
OSL

ABBREVIATIONS

Armament Division

Air Force Requlation

advanced fighter technology integration
Aeronautical Systems Division
Abstract System Semantic Model

air crew training device

Air Tasking Order

Ballistic Missile Office

Berkeley Software Distribution
Computer Assited Air Force Management System
Commander-in-Chief Strategic Air Command
computer output microfiche

computer program development plan
computer program configuration item
central processing unit

interactive terminal

computer software configuration item
Consolidated Space Operations Center
Distributed Computing Design System
Dansk Datamatik Center

distributed design language
Department of Defense

Data Structured System Design
electronic intelligence

Graph Model of Behavior

lierarchical Design Methodology
higher order language

hierarchical specification language
intercontinental ballistic missile
inertial upper stage

independent verification and validation

Joint Interoperable Tactical Air Command and Control System

Jackson System Design
Joint Strategic Target Planning Staff
line replacement unit

modular design language | Acce.ion For |
military NTIS CrAal ﬂ
operation flight programs OiHC 73 1]
overall significance level Urinononen r)

.........................

b “u S Sl Sa i Sest aanil A et Nl s oo Vi el ST b e Pt el ~ A B I S o dn el et Senbauien i eade uia B i Madh b b Sl i ol v;—x‘_—--g-,‘-(-;-.vunl

vy
—t

Y}

‘el

»

ORI
. KRR A
LlL.L D

ABBREVIATIONS - continued

PAISLey Process-Oriented, Applicative, Interpretable Specification Language
pdi program design language

PROM programmable read-only memory

RADC Rome Air Development Center

RFP request for proposal

RSL requirements statement language

SADT Structured Analysis and Design Technique
SARA System Architect’s Apprentice

SCF Satellite Control Facility

SCR Software Cost Reduction project

SD Space Division

SDL software development laboratory

SILTF System Integration Laboratory and Test Facility
SIOP Single Integrated Operation Plan

SL significance level

SPO System Program Office

SREM Software Requirements Engineering Methodology
SRU shop replaceable unit

STD standard

TAC Tactical Air Command

TACC Tactical Air Control Center

TACS Tactical Air Control System

TDI transition diagram interpreter

TLS top level specification

TRD Test Requirements Document

TSL test specification language

oeT unit under test

VDM Vienna Development Method

A

a
&

TEEAT

e v,
P
«
-

ST T

viii

AR A
LI T R

T

. ". ".".._‘ AN

1.0 SPECIFICATION TECHNOLOGY GUIDEBOOK

1.1 INTRODUCTION

The Specification Technology Guidebook is designed for Air Force technical managers.
Using the guidelines herein, software development project managers can select metho-
dologies and tools, at the front-end of the software development life cycle, that will not
only benefit software projects during system requirements, software requirements, and
design phases, but also during the remaining life-cycle phases.

The field of specification technology is in continual expansion; new methodology and
tools enter the marketplace weekly, while older ones mature or are adapted to accom-
modate different computer hardware, CPU’s, or languages. For this reason, the guide-
lines are constructed in modular form, for easy inclusion of new methodologies and
tools, or revised descriptions of old ones.

Further, the guidelines are designed for use by Air Force technical managers on projects
contracted to companies of varying software engineering practices. In general, our
approach incorporates MIL-STD 490 and meets the requirements of all DoD and Service
software standards. The life cycle information is in accordance with AFR 800-14 and
DoD-STD-SDS standards.

The method by which the user selects methodologies and tools is based on the use of
rating tables found in section 2.0. These tables have been carefully constructed to per-
mit a compact representation of many selection considerations. A more complete dis-
cussion of these considerations can be found in the Final Report of RADC Contract
F30602-84-C-0073, and can be studied as a companion volume to this guidebook.

The guidelines presented in this volume are the culmination of surveys of Air Force mis-
sions, current technical literature (e.g., journals, conference proceedings, and textbooks),
discussions with specification technology developers, hands-on testing of many metho-
dology and tools soltware packages, hours of analysis, and some trial and error
approaches. These guidelines provide the Air Force with a simplified approach to
specification technology selection that will, for the majority of new projects, allow the
technical manager to select the methodology and tools that best suit his needs.

1.2 OUTLINE OF SPECIFICATION TECHNOLOGY GUIDEBOOK

Tue Specification Technology Guidebook comprises six major sections and six appen-
dices, as shown in figure 1-1. A brief summary of contents is presented in the following
paragraphs.

1-1

e I A SR i vt i A e

APPENOIX F
MISSILES
APPENDIX E
Appendices list software MISSION FORCE
funcuions charactenistic of each MANAGEMENT
AFf mission area and map them
nto Guidebook standard
software categories APPENDIX D
SPACE

|

APPENDIX C
i1

APPENDIX 8
AVIONICS

APPENDIX A
ARMAMENT

Sample statement and SECTION G
paragraph for imposing SAMPLE STATEMENT OF
requirements methodology on WORK PARAGRAPHS
contractor.

SECTIONS
SOFTWARE
ACQUISITION LIFECYCLE

SECTIONA
METHODOLOGY
DESCRIPTIONS Brief section on how
r——— methodologres fit in overall
life cycle.

SECTION 3
HOW TO SELECT
AVAILABLE Informational descriptions of
AUTOMATED TOOLS 77 methodologies and references.

SECTION 2
HOW TO SELECT
SPECIFICATION Guidelines for selecting

METHODOLOGIES premmee 3UtOM ated tOOIS tO SUpport
chosen methodology.

SECTION !
INTRODUCTION

Guidelines and tables used to
heremme ¢ hOOSE Specification
methodology.

Explains organization of
o guideboak,

Figure 1-1. Guidebook Organization

1-2

- " . . . - Le . -
- L P R Tt

. T R '-_'.i‘,.

e "". .- . L .'.
T AR R

. IR
TN IS LRI NEG 14,

LR .
PRI o . IR . R A
Nt . y . . ;

P A ARt M~ o § i oA 0= sl amic Shir i pa-de andh Spt R s St it i Sadein el el s ol Sl Ba g

o Section 1.0 introduces the guidebook, stating objectives, describing outline and content,
. and discussing applications.

Section 2.0 describes how an Air Force technical manager may select a suitable metho-
dology for his project by means of the known project requirements and the guidelines
and tables provided. Three possible selection paths are given, along with examples
which step the reader through each selection path.

Section 3.0 describes how the Air Force technical manager may select automated tools
that will be compatible with his methodology.

Section 4.0 provides detailed descriptions of methodologies and tools.

7 Section 5.0 describes the software acquisition life-cycle standards most likely to be
encountered by the Air Force technical manager, briefly discussing how these relate to
specification methodologies listed in the guidebook.

Section 6.0 provides sample SOW paragraphs for guiding the AF technical manager in
writing statements of work for specification technologies.

The appendices describe six Air Force mission areas: armament; avionics; command,
control, communication, and intelligence (Cal); missiles; space; and mission/force
management. Each appendix lists software functions characteristic of the computer pro-
grams developed within that mission. Each function is classified according to software
categories used in section 2.0.

1.3 APPLICATIONS OF THE GUIDEBCOK

The principal purpose of this guidebook is to provide the Air Force technical manager
with a means to select a methodology and compatible tools for his future software pro-
ject. Additionally, the guidebook can be used in preparing a Statement of Work, and
for evaluating proposals.

All three applications of the guidebook make use of the tables and selection paths of
section 2.0 in selecting appropriate specification methodologies.

The guidebook was prepared for a user with a general technical background, who may
be unfamiliar with specific system/software requirements and design technologies.

P - T -c.

- ey
= v"'-_'d_" .
PR

PSS I SO

A AR SN, S NA R LAl B & gt 0 8 S MO G SNL AL BN i i aNIC Sl A M AN W ARt A2 SIS T A LA IR S AR Th prac 4’ R Y = 44 .z\wvgqumwj
[
4 -

R I T
et : !
Pt LA
ST 5 4
P 4 fetage)
§ et

4

s
1
r
-y

Ay
(4

e

1.4 CONSIDERATIONS USED IN RATING REQUIREMENTS AND
DESIGN METHODOLOGIES AND TECHNIQUES

.'
4 &
)

Several considerations were used during development of a matrix that rates the
specification technologies techniques evaluated and discussed in the guidelines. These
are described in the following paragraphs.

]
}

1 LAAJL o

1.4.1 Concept Expressibility o
Whether a specification methodology is suitable for a particular development project '_'.-'-_{:-:
depends primarily upon the concepts specifiable by the requirements methodology and 'T:I:ﬁ:ﬁ
the approach to structuring the architectural design taken by the design methodology. e

A requirements specification will be inadequate if the methodology cannot model the
important features of the system to be developed. A design specification will be inade- AR
quate if the structuring technique couples software modules too strongly to facilitate . }
change, simply because the technique ignored a more important set of relationships. - "Z’-.q

1.4.2 Degree of Automated Support

The suitability of a specification methodology for a particular development project T
depends upon the significance of the project and the amount of computer support a B
methodology provides. It would not be cost-effective to use a very powerful
methodology /toolset like SREM/REVS for a project whose end product was a prototype
of a software development environment tool (e.g., a calendar program). It is the more
significant, complex, and time-consuming projects that will benefit most from more
powerful methodologies.

1-4

‘j: ‘:~1
2 .
2' . 2.0 HOW TO SELECT SPECIFICATION METHODOLOGIES =
. =
a This section presents guidelines for use by the project manager in selecting a >

o specification technology for a future project.

2.1 INTRODUCTION TO METHODOLOGY SELECTION o

1:; The first part of this section provides the guidelines for selecting a methodology and :
754 supporting tools for a project, by system category and with full consideration given to -
S life cycle phase. By following the selection process in this section, the project manager il

will be guided through the maze of current specification technologies and tools to arrive " |
5 at a final selection that fulfills his needs. The process of final methodology selection will .m;_:
. also aid the technical manager in assessing his project requirements and help him evalu-]
ate his needs during the entire project life cycle.

The second part of this section illustrates how the guidelines and tables are used in a
' C31 example. The objective is to define a front-end environment for developing C3I sys-
tems that is compatible with the Ada programming language.

- 2.2 METHODOLOGY SELECTION PATHS

- The guidelines provide a choice of three paths, depending on which software acquisition
B life cycle the project is in when the manager wants to perform methodology selection. A
Path is provided for use at each of the following:

' 1. Path 1. At concept definition (i.e., in the Requirements Phase of the life cycle).
f..:-"_ 2. Path 2. After requirements analysis is complete (i.e., in the Design Phase of the
life cycle).

Eas

e 3. Path 3. When the project dictates the use of certain capabilities (i.e., independent
i of the life cycle).

N2

- The guidelines outline steps along each Path, providing tables for reference and a
- worksheet to fill out along the way. Paths 1 and 2 are similar; the first is used to select
- a methodology using requirements data and the second is used to select a methodology
o using design data. Path 3 is shorter, and is used when a project manager knows that
- the final methodology must contain specific capabilities.
:‘./'
f:: The selection process for Paths 1 and 2 comprise four steps, as follows:

\ -
&5
'.;-Jr

¢ X

zj 2-1

b

1. Step 1. Choose the overall significance level (OSL) of the project.

o

Step 2. Select the best-fit software category.
3. Step 3. Designate candidate methodologies.
4. Step 4. Compare scores for candidate methodologies.

In accomplishing the four steps, above, the project manager is required to reference
tables and enter data on a worksheet. Once the candidates are designated (Step 3), final
methodology selection is straight{orward.

Section 2.3 contains step-by-step instructions for reading the tables, filling out the
worksheet, and selecting a software specification methodology following Path 1. Section
2.4 contains the instructions for following Path 2. Section 2.5 contains instructions for
Path 3.

2.3 REQUIREMENTS METHODOLOGY SELECTION - Path 1

An outline of the Path is shown in figure 2-1. The steps are discussed individually in
the following paragraphs.

2.3.1 Step 1 -- Choose the Overall Significance Level (OSL)

The first step in determining the correct methodology for a project is to choose an
Overall Significance Level (OSL) value for that project. Two items are needed: the
Significance Level Table, figure 2-2 and the Methodology Selection Worksheet, figure 2-
3. A completed example worksheet is shown in figure 2-4.

The Significance Level (SL) Table is divided into five major columns: Project Considera-
tions, Software Considerations, Quality Considerations, Software FEzramples, and
Significance Level. Under each major column are sub-columns, each labeled by a con-
sideration. For example, under the major column Project Considerations are three sub-

- columns Cost, Criticality, and Schedule. Similarly, the major columns Software Con-
: siderations and Quality Considerations have three and four sub-columns, respectively.
The Software Examples column provides example software products for use as a guide in
e assessing significance levels. The Significance Level column contains the SL numeric
F values that are assigned to the capabilities, based on the considerations.

s

e
.':,- The Methodology Selection Worksheet (also called ‘‘the worksheet”) is divided into four
i:: columns: Conssderations, SL, Weight, and Product. Note that the rows under the Con-

stderations column correspond to the consideration sub-columns in the Significance
Level Table (figure 2-2).

>
4

T -“;"“T'..' K
- i a . . .

6

[~

ot
. a

W
.
-

NI
L)

RO
e T4
s R \nLlLMllhx . WYY

LDAroydd o1d1oads
VY HOd SALLI'UAvVdvO
Q3UINDIY ANINYALIA

AHODALVD ADO10AQOHLAN

dUYym.L40S TVNId
10d4H0D LOA13S

SULLI'UEVAVD

SINANAUINDAY cmm__mmo LAFHSMHOM

HLIM SAIHDOTOQOHLIN NOLLDHATAS
ALVAWUUNYD LOJTdS ADOTOQOHL:

SALVAIUNYD
ADOTOAOHLIN
3HL/H4H00S

Figure 2-1 Path 1 Overview

o« ™ M LN e T W w
A e R L A

[T S P TS
<, ~ "o

A A S et i il S Jhal feac S Sol M Al e R
S LTI T, R e JiaR A,
e e T T

T T T,

PUR S S R T T PR I R S

A faull i# an undesirable response to anomalous conditions.

Figure 2-2

Significance Level Table

_»
> -.L;u“)s.

None of the present mature software development methodolologies enforce documentation
or changes ot any level.

Q‘\.‘V\}: N

of enhancements

\th'\

Lot

\ f
J'L \‘-‘u‘-"\ e

i
o
-N "-
== =1
SIGNIFICANCE LEVEL TABLE
Project Coanidenations Software Considerations Quality Considerations
Cost [nticality| Schedule Complatn For-‘Sou'u?eliability Correct- Maintai- Menfiabilit -
ty ity tility L) pability e
Low No ¢cn- | Tight Ptraight- {Few One- |Respond | Func- Nose Docu- Test
Budget, |ticality | Schedule !orvud defined shot, |correctly | tional expected | mesta- | Geaer, ._-.“,-
emphasis | assign- bole- require- [Proto- [to wom- | ity met; tion in conver-
on mis | ment dion; ments;, [type, [iaa) con- source sion .)
cont pasy to |infor- Test coadi- straiats code table, o
Fheckout [mal S/W; [tioas ignored trade LSty
develop- |Demo stady e
ment; (S/W simu- T
nsed lated S
locally S
Norma! |Nuw Some Moderate|Normal |Ground [Faults Fanc- Predict Source Editor,)
cost sance schedule Com- to Based |corrected | tional impact code com-
con- Impact, | con- plety [Strong [S/W, [peniodi |ity aad of docu- piler,
straats (oo Mis- | stramnts Coa- Data cally; con- changes menta- missios
210D tractor |Reduc- jtem- straints tioa simula-
1mpact Cou- tion; [porary | met spdated | tion,
trols, Mission [wor- eaviros-
infor- {Prep (karounds meatal
mal S/W ipro- simula-
| reviews wded tor
Some ‘{ Mission | Normal [Greater {Strong [Real [Fasits | imple Impact Full AWACS,
Cost | Impact | Schedsle Com- Con- time removed | meata of comple- | ALCM,
Flex:- Con- plexity itrac- Avion- |ASAP tion changes ment of | PMALS,
bility strants taral s, C3 val- some- docu- C3l,
Con- s/w, dated what menta- | AVION-
trols, C3l against focal- tion; 1Cs
Formal design ised desiga MIs-
Reniews specification docs- SION
! menta- | PLAN-
‘ tion NING
l P updated
: 100
Cost ‘ Naclear, | Adds- ifficalt [Ripd Highly |No Design Exteat Require- { Nudear
‘ not fight tional rob- |Con- Cntical (faulte vali- of ments Con-
"predom- | crew require- Jem, tractoal |Appl- dated changes throegh | trois;
! 1nant safety ments om- Con- cations, aganat optimally | source entical
/ factor, Lwill not plex trols Possible require local- code software
| rela- ‘ impact le- Over Catas- ments ised docs-
! tively schedule Bios; Develop- ltrophic specification ments-
l'uncon- ! Hard to |ment Results tion
i nraned ! ' al- always
': t : ate wp-to-
L ! L ! date

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE REQUIREMENTS DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
0,1,2,3) | (1 =NORMAL) | (WEIGHT

| FIGURE 2-2 X SL)
COST

CRITICALITY
SCHEDULE
COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
UTILITY

RELIABILITY
CORRECTNESS
MAINTAINABILITY
VERIFIABILITY

SUM

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

SOFTWARE CATEGORY
CANDIDATE METHODOLOGIES

KEY
SCORE

Figure 2-3 Methodology Selection Wotksheet

-..‘.-‘""ﬁ'.'_",i Ot ket s
. 0'-‘-'-'.' T N I l.l

ot

%;3;‘
2

s
i 2w

W a4

(R VA &

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED ExAMPLE

LIFECYCLE PHASE X REQUIREMENTS ___DESIGN
CONSIDERATIONS SL WEIGHT PRODUCT
(0,1,2,3) | (1=NORMAL) | (WEIGHT
_ FIGURE 2-2 X SL)

COST / 2 K3
CRITICALITY / / ,
SCHEDULE 3 o o
COMPLEXITY / / /
DEVELOPMENT ,
FORMALITY ’/ y
SOFTWARE
UTILITY 4 / o
RELIABILITY 2 / 2
CORRECTNESS 2 / 2
MAINTAINABILITY 2 / 2
VERIFIABILITY / / /

SUM /0 /3

Jx /.ao
OSL = SUM OF PRODUCT / SUM OF WEIGHT = 72
Round doum —> 1
SOFTWARE CATEGORY A
CANDIDATE METHODOLOGIES

KEY D F
SCORE /2 2/

Figure 2-4 Example Methodology Selection Worksheet

R £ afin=ain Safie =i il WAL AL R et e St il e e Sa S e i me o oadi SRl Vaiiulin Rutai ot P . ekl Sl AL SN Yl A e A

.............................

Additional copies of the Methodology Selection Worksheet are located at the end of this
section. If all copies have already been torn out, then figure 2-3, Methodology Selection
Worksheet, can be reproduced, and returned to the guidebook.

Entries for the worksheet are defined as follows:

1. CONSIDERATIONS -- the column of considerations whose names correspond to
sub-columns in the Significance Level Table (figure 2-2).

2. SL -- the column of siguificance level values (0 through 3) relating to the con-
siderations in the Significance Level Table.

3. WEIGHT -- the column of weighted values assigned to the considerations.
4. PRODUCT -- the column of products of SL’s and weights.

5. SUM -- two sums are used: the sum of the weight column and the sum of the pro-
duct column.

6. OSL -- the Overall Significance Level for the project, obtained by dividing the pro-
duct sum by the weight sum.

7. SOFTWARE CATEGORY -- the numerical category obtained from the Software
Categories Table (figure 2-6) in Step 2.

8. KEY -- the alphabetic key that represents a methodology, obtained in Step 3.
9. SCORE -- the numeric score for a methodology, obtained in Step 4.

In Step 1 the user begins filling out the worksheet, using the SL table and his knowledge
of the software project. To begin, the user asks: What 13 the significance of cost for the
project? Under the Cost column, four choices correspond to Significance Level numbers
in the right-most column of the table. Thus, if Normal cost constraints were chosen as
the most appropriate cost project consideration, the SL would be 7. Figure 2-5, Exam-
ple Use of Significance Table, illustrates this procedure. In this case, a 1is placed under
SL in the Cost row of the Methodology Selection Worksheet, as shown in figure 2-4.
For each column in the table, the description is located that best fits the consideration
for that column, then the corresponding SL number is written on the worksheet in the
correct row under SL. At the end of this process, the SL column of the worksheet will
contain ten values.

Next, the ten considerations are weighted by entering values in the Weight column. The
weights reflect how relevant or important a single consideration is to a project. If all
considerations are weighted equally, a 1 is entered in each row of the Wefght column. If
a consideration is critical, a higher weighting (e.g., 8) is assigned. A reasonable range

ER
NN

paves
5N

'

Nl ‘.‘ o

2 a4 2 a4 0

]
"
"
"
>
-

Find

Cost

SIGNIFICANCE LEVEL TABLE

3 Considenations Software Considerations Quality Coamderations Software Eignificanc
Cost [rijicality| Schedule Complex-Devt For-SoftwareReliability] Correct- Mainta- Nenfiabilit
ty ahity Utility sem sability
- ﬁ: n- | Tight traight- |Few One- [Respoad | Fune- Noae Doce- Test 0
Ba =1 ticali Schedule For'ud defined [shot; [correctly [tional expected | menta Gener,
emphas | aseign bolu- require- [Proto- {to mom- |ty met; tion in conver-
o mua ment bion, mepts, [type; inal coa- source si0n
cont pasy to [infor- (Test coadi straints code table,
rheckout [mal S/W, |[tions ignored trade
develop- |Demo stady
ment, |S/W simu-
used lated
locally S
;Nomu Some Moderate{Normal |Ground [Faalts Func- Predict Source Editor, ./~ 1 N
cost s\dce schedule Com- to Based |[corrected | tional impact code
con- Ipppact, | con- plexity [Strong [S/W, [penodi- | ity and of doce-
strants o Mis- | straints Con- Data ([cally; con- changes ments
80 tractor (Reduc- [tem- straints) K A
impact — Con- tion; norary met wpdated | tion,
Troies ' oY eaviros-
infor- (Prep |karownds mental
mal S/W [pro- simula-
reviews wnded tor
Some ‘Mission | Normal [Greater [Strong |Real [Fauhs Imple Impact Fuall AWACS, 2
Cost Impact | Schedale Com- Con- time removed | menta- of comple- | ALCM,
Flex)- Con- plexty [trac- Avion- [ASAP tion changes ment of | PMALS,
bility strants taral 1, C3 val- some- docu- Csl,
Con- o/w, dated what menta- AVION-
trols, C3l against local tion; ICS
Formal design ised design MIS-
Reviews specification docu- SION
menta- PLAN-
tion NING
updated
too
Cost Naclear | Addi- Difficalt |Rigpnd Highly No Design Extent Require- | Nuclear 3
not fight tional Prob- Coe- Cntical (fauhts vali- of ments Con-
predom- |crew require- Jem, tractoal [Appl- dated changes through | trols
- inabt jaafety ! ments Com- Con- cations, against optimally | source cntical
? factor, ' ! will ot plex trols Posaible require- local code software
rela- | impact Bols- Over Catas- mepts ised docu-
Ctively ; schedale pron, Develop- |trophic specification menta
sncon- | Hard to |ment Resalts tion
straned |] Vals- alwayy
' date up-to-
,‘ ! l date

Figure 2-5 Example Use

of Significance Table

Enter

on I<
wor
shect

for weight values is 0 through 3. Since a weight of 0 implies that a consideration is not
relevant to the project, a negative weight is meaningless. A 1 is normal; a 2 is impor-
tant, and a 8 is very important. Numerical values above 3 lose significance, since the
calculation is relatively insensitive to a single consideration's weight value. Weight
assignment is subjective and dependent on the project manager’s knowledge of the pro-
posed project, but is valuable in emphasizing considerations. Initially, the project
manager may feel more comfortable assigning a I as the weighting value, but as he
gains experience, he will acquire a feel for how weighting influences final methodology
selection.

The Product column is completed on a row-by-row basis by multiplying the SL by the
Weight. For example, if the SL is 1 and the weight is 2 the product is 2 X 1 = 2. The
2 is entered in the Product column. Each row on the worksheet is processed similarly,
resulting in entries for all considerations in all three columns.

The sum of the weight column is calculated and entered in the Sum row; the sum of the
product column is calculated and entered in the Sum row. The Overall Significance
Level (OSL) for the project is calculated as follows:

OSL = Product Sum / Weighting Sum

Thus, if the Product Sum = 12, and the Weighting Sum = 10, the OSL = 1.20. Since
whole numbers are required in future steps, the fraction must be rounded up or down.
In determining this, the consideration is located with the highest weighting and its
corresponding SL noted. If the SL is 2 or greater, the OSL is rounded up; if 1 or less,
rounded down. In our example, cost has the highest weight; the SL for cost is 1, so we
round down. The final OSL becomes I and is entered on the worksheet.

2.3.2 Step 2 -- Select the Best-Fit Software Category

In Step 2 the user determines which software category best fits his proposed software
project. In accomplishing this he uses the Software Categories Table, figure 2-6, and
enters the result on the Methodology Selection Worksheet.

The Software Categories Table is a multi-page table of three columns: Category,
(‘haractersstics, and Description. The user reviews the 18 software categories, using his
knowledge of the proposed software project, and selects the most relevant category.

The categories, characteristics, and descriptions in the tables are grouped by complexity
and criticality in accordance with a survey of Air Force software engineering considera-
tions, undertiken during the Software Test Handbook contract, F30602-82-C-0059.1 A
user finding difficulty in identifying an appropriate software category, should refer to

1 See Software Test Handbook Final Report (RADC-TR-84-53, Vol 1) for details of the survey.

2-9

A

Tt
I

headh

'
| N

L e S e s

R) t
.e - St
bl

AN PR A

N g

TeT Yy ——— RaR sl aial And ey
A Salb it P/ T

M

SOFTWARE CATEGORIES TABLE

",

hEAARA Sl Sal e Bl P Aadl Sl s el il ol A il S vl S
. B . EEE 2 e e i tyfat

Category

Characteristics

Description

(1) Arithmetic Based

Data oriented

Programs that do primarily
arithmetic (e.g.. payroll and
wind tunnel data analysis)
operations. A realtime
environment is not necessary.
Small, throwaway programs
for preliminary analysis also
fit in this category.

(2) Event control

Control-oriented processing

Does real-time processing of
data resulting from external
events. An example might
be a computer program that
processes telemetry data

{3) Process control

Control-oriented processing

Receives data from an exter-
nal source and issues com-
mands to that source to con-
trol its actions based on the
received data.

(4) Procedure control

Complex processing

Controls other software; for
example, an operating system
that controls execution of
time-shared and batch com-
puter programs.

(5) Navigation

Complex processing

Does computations and
modeling to compute infor-
mation required to guide an
sirplane from point of origin
to destination.

{8) Flight Dynami-s

Control-dominated complex
processing

Uses the functions computed
by navigation software and
sugmented by control theory
to control the entire flight of
an aircraft.

Figure 2-6 Software Categories Table (part 1 of 3)

. .
[P A
]

7 4]

)
L4

R ——

.
.

PR

continued
Category Characteristics Description
(7) Orbital Dynamics Control-dominsted complex Resembles navigation and

processing

flight dynamics software, but
has the additional complexity
required by orbital pavigs-
tion, such as a more complex
reference system and the
inclusion of gravitational
eflects of other heavenly
bodies.

{8) Message processing

Data-dominated complex
processing

Handles input and output
messages, processing the text
or information contained
therein.

{9) Diagnostic S/W

Data-oriented processing

Used to detect and isolate
hardware errors in the com-
puter in which it resides or in
other hardware that can
communicate with that com-
puter.

(10) Sensor and signal pro-

cessing

Control-dominated complex
processing

Similar to that of message
processing, except that it
fequires grester procesc.ng.
analysing, and transforming
the input into a usable data
processing format.

(11) Simulation

Complex, depending on
entity being simulated

Used to simulate an environ-
ment, mission situation,
other hardware, and inputs
from these to enable a more
realistic evaluation of a3 com-
puter program or a piece of
hardware.

(12) Database management

Data-oriented processing

Manages the storage and
sccess of (typically large)
groups of data Such
software can also often
prepare reports in user-
defined formats, based on the
contents of the database.

-
X
e
-, "
.h
A

Figure 2-8 Software Categories Table (part 2 of 3)

continued

Category

Charactenstics

Description

(13) Data Acquisition

Control-dominated complex
processing

Receives information in real
time and stores it in some
form suitable for later pro-
cessing; for example, software
that receives data from »
space probe and files it for
later analysis.

(14) Data presentation

Data-oriented

Formats and transforms
data, as necessary, for con-
venient and understandable
displays for humans. Typi
cally, such displays would be
for some screen presentation.

(15) Decision and planning
aids

Uses artificial intelligence
techniques to provide an
expert system to evaluate
data and provide additional
information and considers-
tion for decision and poli-
cymakers.

(16) Pattern and image pro-
cessing

Data-dominated complex
processing
Data-dominated complex
processing

Used for computer image
generation and processing.
Such software may analyse
terrain data and generate
images based on stored data.

(17) Computer system
Software

Data-oriented

Provides services to opera-
tional computer programs
(i.e., problem-oriented).

{'8) Software development
tools

Data-oriented

Provides services to aid in
the development of software
(e.g., compilers, assemblers,
static and dyoamic
analyzers).

Figure 2-6 Software Categories Table (part 3 of 3)

2-12

S the appendix describing the pertinent Air Force mission and find the software function
most similar to the proposed software project. The category number assigned to that o

software function can be used as the software category on the worksheet. The software

category number is entered in the Software Category row of the worksheet (as shown in

figure 2-4).

;f-:: The categories are identical to those found in the Software Test Handbook (RADC-TR-
84-53, Vol II), except the category formerly designated Bafch has been renamed
o Arithmetic-Based to better convey its nature.

-: 2.3.3 Step 3 -- Designate Candidate Methodologies

In Step 3 the user matches the capabilities of the methodologies against the capabilities
he desires in a requirements methodology; i.e., the user knows which capabilities he'd
like in a methodology and this step allows him to select those methodologies coming
closest to having those capabilities. To accomplish this, the user will need the Path 1 N
Match Table, figure 2-7, and the Methodology Selection Worksheet. oy

L A methodology that is a good candidate will have approximately the same pattern of
- entries (where r entries indicate the capabilities present in a methodology) in a row of
the Methodology section of the Path 1 Match Table that the Software Category section
o has in the software category row. Note that a perfect match occurs when a row in the
' methodology section has at least the same number of z's in the same columns as does the _
row in the Software Category section; i.e., a perfect match still exists if more than the e
needed matching z's are contained in a methodology row. The key letters for the best :
candidates are entered on the worksheet. =

For instance (see figure 2-8, Example Use of Path 1 Match Table), software category 6
needs a methodology with capabilities for state modeling, data flow modeling, control
. flow modeling, object modeling, and timing specification (i.e., these columns contain
', I 's)A

- In the Methodology section, two methodologies have identical entry patterns, D and F.
Thus, methodologies D and F become candidates for final selection and are so noted on
the worksheet. Perfect matches may not exist between a software category’s capabilities
and the methodology capabilities. For example, the K methodology is close to matching
s and could be selected as a valid candidate, unless its absence of the state modeling capa-
I bility would critically affect the project. The user must look for reasonable capability
approximations in selecting candidate methodologies. He may select a set of candidates
having either less or more capabilities than those desired.

In general, completing Step 3 means the user has selected several candidate methodolo-

Accuracy

Performance
Specification

Timing

Object

Control

Path 1 Match Table

Modeling

Techniques
Flow

Data

State

10
11
12
13
14
15
16
17
18

LGt

KOO mo»™

C0O»

N TR

s

Figure 2-7 Path 1 Match Table
2-14

- -
2
‘55 ,‘:":x_

o . ; A
4
\ Path 1 Match Table T)
) - 4
- Modeling Performance }
NG Techniques Specification ‘
. Flow
N State Object Timing Accuracy

Data Control
: S 1 X X x
- o] 2 X x
k.-~ F 3 x X
" T 4 X X X 50#‘4”"' =

i w 2 X - X x cateaor s

< 6 X X X X X &5 j T 1
(< —~ — " ‘," :

R _— e g s re— X X j

- E 8 x x X x h
T 9 x x x
7 Cc |10 X X X

= A1l x X x
S T [12 X X X
E |13 x x x x X x
o G |14 x x x

- O |15 x X x x

R | 16 X X X

~ Y 7 X X x
- 18 X x
'_:* M A X X X
E | B x X x

7 T PG——-—f X x pgpu—

H(| D X X X X X iches
- (0] — m&

o " = ad “D
F X X x X x x
N oo — — - ve"

L | H x x

- (0] i x x
- G o X X X ~y. l
- Y(| K x x near ™) o
' X X X
. K“

{

% -
o -
o, N

. Figure 2-8 Example Use of Path 1 Match Table ;.‘

\ L

a' " . E)A X
:: N

» l‘.\“
",.'; 2-15 ‘:L‘il
<. [\\‘
L -'»‘r..

o

gies having capabilities critical to the project’s life cycle phase and software category.

2.3.4 Step 4 -- Compare Scores for Candidate Methodologies

In Step 4 the user scores each candidate methodology and determines the final metho-
dology for his proposed software project. To accomplish this, he will need the Metho-
dology Selection Worksheet and one of four tables.

He begins by finding the proper methodology score table for his Path and OSL. On
Path 1, he uses figure 2-9 if the OSL is 0, figure 2-10 if the OSL is 1, figure 2-11 if the
OSL is 2, and figure 2-12 if the OSL is 3.

After accessing the correct table for his OSL, he locates the methodology letter under
the AMethodology column, then follows that row to the column under the Software "*3
Category number. See figure 2-13, Example Path 1 Methodology Scores for OSL=1. T j;_']
The intersection of the methodology row and the software category column contains the e
pre-calculated score for the candidate methodology. He enters this score in the Score]
row, under the candidate methodology key letter, on the worksheet.

The candidate methodology that best fits the proposed software project requirements
will be the one with a final score nearest zero. That is, if methodology D has a final
score of 12 and methodology F has a final score of 21, then methodology D is the best
fit. A methodology score found in the four OSL tables indicates how the methodology - i
compares to a fictional ¢deal methodology. A positive score means the methodology pro- ey
vides more support to the project than nominally desired; a negative score means the N
methodology provides less support to the project than nominally desired; a score of zero B
means a methodology provides the support nominally desired.

2.4 DESIGN METHODOLOGY SELECTION - Path 2

Path 2 is similar to Path 1, except that Step 3 matches desirable design phase capabili-
ties (instead of the requirements phase capabilities of Path 1) against the Path 2 match
table. and the scoring of the methodologies in Step 4 makes use of a separate set of
design phase OSL tables.

An outline of the design methodology selection Path is shown in figure 2-14. The Steps
are discussed individually in the following paragraphs.

2.4.1 Step 1 -- Choose the Overall Significance Level (OSL)

s,
]

-

-~ ST,
s

, .
» A
"" el

et L,

a
s A

3

-
-

......

S L) LAY
PO T K TS I

Path
Methodology Scores (OSL = 0)

..........

1

Methodology Software

Category
1 (2!/3(4]|5([06|7({8{9]10]11 (1213 }14)15|16}17 |18
A 24 1231231242530 27 (28|24 [27 |30 |24 27|24 |22]|29{ 28] 25
B 38 |34 |34 |37 139141 |46 140138 146 |41 |38 |46 138 31| 41)40 37
C 260127 127126{27132]30{39]26]30)32126)30])26]22]2939]25
D 32 131131323339]|37(35]32|37[39(32[37(32[30{37]35]31
E 31 (28 (28(281{30136[36(35/31{36 |36 |31 |36 |31)24]|34]35(]30
F 44 142142144147 |48 |51 [44 144 |51 {48 [44 | 51 | 44 | 37 {47 | 44 | 40
G 271191920125 |28[29]27 (272928 {27 (29 (277119 131|27125
H 47 |40 (40141 146 [49|50 148 |47 1 50 | 49 | 47 | 50 | 47 | 33 | 52 | 48 | 45
I 28 1211212222131 |29|30(28|29 |31)28)29 (28 22]|29/|301}26
J 3336|3636 (3940433933 (43 |40 {33 (4313326363930
K 40 | 45 1 45145 |47 153 |51 |51 |40] 51 | 53 | 40 | 51 | 40 | 34 | 47 | 51 | 42
L 40 |37 |37 |42 |39 |46 | 47 |42 |40] 47 | 46 | 40 | 47 | 40 | 32 | 43 | 42 | 38

Figure 2-9 Path 1 Methodology Scores for OSL=0

- u-,.. - - -
v - o A o - . .-t . el e . . - -~ . . > B,
R O R L St N T IS A ANt e e Sadsa i o

- x

I. ala
#

= N R

‘\t.‘\‘ .“)

Path 1 L

Methodology Scores (OSL == 1) T

s

Methodology Software f_'.:_‘:
Category L

e

23|45]6 8 (0 [10(11{12/13)24{125}186{17]18 o
1(1]1]3 312 312 f-112]214]|3(]4 Sl
161212141514 15 | 16 14161816]11]16]15] 16
415]5]313]5 414 5142424414 =
10(9[9(9{9 (12 10 | 10 1210} 9 f10}10]12]10]10 R

9166 |]5]619
22120120721 }2312
5 ({-31-31-31111
25|18 |18 118 22| 22
6 (-1 ({-1}|-1|-2}4
11 {14 {14 [13 [15[13 14 {11
18 1231231222326 26 | 18
181151519 /1511911917]18119 {19)18} 19

109
19 | 22
215
23 | 25
5|6

21 | 22123

22 125 | 22

13 {11 | 15

Bla|=[B|=|B|=|e|elz]|~

R |= =X BIOIO|E]|>

Figure 2-10 Path 1 Methodology Scores for OSL=1

g
=

R

-...- -
g
LARE
[N)
[- S
»‘.4.4‘

2-18

MRS TR L AP B IPEE S e ST a A o R T . LN
. <".-‘ P \--",'- P ¥ .,'-»,'- e T :.f‘_n“}_ . _.._‘Fn_ R L A NG YA
LT O R T N T T T T Y T LIRS NN

o, T e T e’ % . e LS . . s

LI“-‘JJ.J;X"’L" L L\‘L'.A_"'."'- R R L I I) W0 N

- N R A AR N R NN A Y L T e g
mln L e T e IR Oy

T VR - VT W W PR e Vet -’

e

c e

5.; Sy
::: =y
o ol
:::-' :}:if
' .
-
[o
L -]
Path 1]
2 Methodology Scores (OSL == 2) S
=3
s
:'-_'f
Methodology Software ~-i
Category
1|12 |3|4|6]|6|7 |89 |10711|12|13[14(15106|17 |18 T
A .20 [-21]-21 [-22]-23[-24[-20|-22[-20 [-20 [-24 [-20 [-20 [-20 [-18] -21 [-22 [-17
- B 6 |-10]-10| -9 | -9 |-13|-10]|-10] -6 |-10|-13| 6 |-10]| 6 | -9 | -9 |-10] -5
c a8 |17 [-17 {20 [-21 [-22 26 |21 [C18 [-26 [-22 | -18 [-26 | -18 | -18 | -21 | -21 [-17
a D 12 |13 |13 [-14 |15 [-15 [-19 |15 | -12 |-19 | -15 |-12 [-19 | -12 | -10 | -13 | -15 | -11
- E 13|16 [-16 [-18-18 |18 [-20 [-15 [-13 |20 [-18 | -13 [-20 | -13 [-16 | -16 | -15 | -12
- F o|2|2|2]1]|6|-5]-6|l0|5]|6|0]|-5|0|3|3]-=6]-2
X G .17 |-25 |-25 |-26 | -23 [-26 [-27 [-23 17 [-27 [-26 | -17 [-27 [-17 | -21 | -19 | -23 [-17
H 3| -4|4|5|2|-5|-6|-2|3|6|-5|3 |-6|3|7]2]|2]3
- 1 .16 |-23 |-23 |24 [-26 [-23|-27 [-20[-16 [-27 [-23 [-16 | -27 | -16 | -18 | -21 | -20 | -16
ad J 11| -8 | -8 [-10] -9 |-14[-13[-11 {11 |-13]-14 |-11 |13 |-11 |-14 |-14 |-11 | -12
o K v [afalals|1{a{s[aa]s]-a[6][3]1]0
"o L 4|77 aflo{8[9o]8]alo|8|-a|-0]-a]|-8[-7]-8]-4
o
') Figure 2-11 Path 1 Methodology Scores for OSL=2
o

Path 1
Methodology Scores (OSL = 3)

.
DN
—_a

4

T
i
R,
erany

Methodology

Software
Category

3|4 |56 |7 |8 (9]10]11]12]13

-26

-21}-24]-25(-281-33{-24[-26]-33 |-28 [-26 |-33

R =[=(RDMm@O|Q|Z >

-26

-291-27(-331-35]-37{-33|-26 |-37 |-35[-26 | -37

Figure 2-12 Path 1 Methodology Scores for OSL=3

Path 1

Methodology Scores (OSL == 1) Finc
Software
Cau‘cﬁorfj
. Methodology Software
" Category
. 1 (2|3« N\s]|6 s8lol1o]nn 1213141518][17]18
" A B ERERREE 1¥ 2lalsaf2]ale{2]e]3]4
B 1612121415148V ik 16|18 (1416181611 [16][15]16
C 4| 5]5|3[3]s\f2 g2 s lafolal2]la]a]a
) 1099 oo [@2ofl 8]0 9 12]10] 9 10]10]12]10]10
E 966|569 |’£ plo|[s8[o|o|[8]ol4f[o]10]09
F qf20(20{anfosfar)os|Ploal2s]|2a1]2a]23]24a]17]22]10]19
G s1-3[-3[-3]1 1| ls]1l1]s5]1]s]-1]6]2]4
H s [1s (18|18 oo o222 fo3as 22222522 25]13]27]23]24
| 6 |-1]{-1]-1]-2]4 s{6|1]4]6j1{6]2]4][5]s
J (bl infis{n]e|nfiafo
;1() 18 |23 23 |22 2326 J23 (261823 |26 [18]23[18 [14 [22][26 |21
L 18 (1s{1s 1915 o917 8191918 f1of18f12]18f17]17

A Fondl Mu‘,hodclo L
\\ KeE) letlers 97

Figure 2-13 Example Use of P2ath 1 Methodology Tables

2-21

-<--¢.12¢.<1..4,
-iﬂ.l -ivuk J X c -
I T A T T v § -

A ;

‘ : Tey : E |

4
‘e

e B aal

Lodroud J14103ds
¥V 404 SALUavdvd

ook

=

=S
<. =<
W
LR
=2
K\t(
)
Figure 2214 Path 2 Overview
2.22

aauindIy ANINY3L3A

v .. g
. & AMODALYD =
s \—\ JUVMLIOS .
o AUHYOO LO313S .
g ®< Loau ADOTOQOHLAN]
i f120® s |
), & :
N7 yd ! .
3 Q iv SHILITEVAVD L
7 A NDIS3A Q4uIsaq I .
3 HLIM SHIDOTOAOILLAN o
3 ALYQAANYD LOAT3S LITHSHYOM S
3 NOLLDATAS S
mt D0 10QOHLIN Do
'- ...-;,
, SALVAIGNYD wj
b, AD010AOHLIN o
] AL dHOOS A
ﬁ_ .A.\.J-,
T&,
b- .
r. ,..
§

N

. . e e B TR
SRR | A Sy e s e h
9 faia e e 2+~ R V8 J e P Sta et

- v .y ali = e A -y P o
k0 Y anaie S a i R R A AR IS AL A Al S A M AN MO - S L L e - LA

.....

S

ool

S
The first step in using design-phase considerations is to determine an Overall -ijjj
Significance Level (OSL) value for that project. The approach to completing Step 1 is “_j
identical to the one taken in Path 1 for the requirements phase. The same table and —
worksheet are used: the Significance Level Table, figure 2-2 and the Methodology Selec- ‘-3;.
tion Worksheet, figure 2-3.]

-9
In Step 1 the user begins filling out the worksheet, using the SL table and his knowledge ﬁ $
of the software project. Refer to paragraph 2.3.1 for the method of completing this ot

step, as well as an example.

For each column in the table, the user locates the description that best fits the con-
sideration for that column, then writes the corresponding SL number in the correct row
under SL on the worksheet. At the end of this process, the SL column of the worksheet
will contain ten values.

Next, the user weights the ten considerations by entering values in the Weight column.
If all considerations are weighted equally, a 1 is entered in each row of the Weight
column. If a consideration is critical, a higher weighting (e.g., 3) is assigned. Weight
assignment is subjective and dependent on the project manager’s knowledge of the pro-
posed project, but is valuable in emphasizing certain considerations. As discussed in the
Path 1 description, the project manager will probably feel more comfortable assigning a
1 for the weighting value, but as he gains experience in using the tables, he will acquire
a feel for how weighting influences final methodology selection.

The Product column is completed on a row-by-row basis by multiplying the SL by the
Weight. For example if the SL is I and the weight is 2 the product is 1 X 2 = 2. The
2 is entered in the Product column. Each row on the worksheet is processed similarly,
resulting in entries for all considerations in all three columns.

The sum of the weight column is calculated and entered in the Sum row; the sum of the
product column is calculated and entered in the Sum row. The Overall Significance
Level (OSL) for the project is calculated as follows:

OSL -= Product Sum / Weighting Sum

Thus, if the Product Sum = 11, and the Weighting Sum = 9, the OSL = 1.22. Since
whole numbers are required, the fraction must be rounded up or down. To determine
this, the consideration is located with the highest weighting and its corresponding SL
becomes the determinant. (In the case where two or more considerations are weighted
with the same value, then use the highest of their corresponding SL’s as the deter-
minant.) If the SL is 2 or greater, the OSL is rounded up; if 1 or less, it is rounded
down. For example, if cost has the highest wrighting and the SL for cost is 1, we round
down. The final OSL, in this case, is rounded down from 1.20 to 1 and is entered on the

worksheet.
2.4.2 Step 2 -- Select the Software Category =

L
In Step 2 the user determines which software category best fits his proposed software A.’__~.;f.:

project. To accomplish this he uses the Software Categories Table, figure 2-6, and
enters the result on the Methodology Selection Worksheet. This step is identical to Step
2 in the Path 1 description, paragraph 2.3.2, and the example will not be repeated here.

Using the Software Categories Table, the user reviews the 18 software categories, using
his knowledge of the proposed software project, and selects the most relevant category.
The software category number is entered in the Software Category row of the worksheet.

2.4.3 Step 3 -- Designate Candidate methodologies
3 In Step 3 the user matches candidate methodologies against desired design methodology
t‘ capabilities; i.e., the user knows which capabilities he'd like in a methodology (from a

design-phase viewpoint) and this step allows him to select those methodologies that
come closest to having those capabilities. To accomplish this, the user will need the
Path 2 Match Table, figure 2-15, and the Methodology Selection Worksheet, figure 2-3.

A candidate methodology will have approximately the same pattern of entries (where z
entries indicate the capabilities present in a methodology) in a row of the Methodology
section that the Software Category section has in the software category row. The key
letters for the candidates are entered on the worksheet.

For instance (see figure 2-16, Example Use of Path 2 Match Table), in software category
6. entries indicate structuring techniques for all subcolumns under the Decomposition
and Abstraction columns (i.e., the functional, data, and control, (under Decomposition)
and data, and process (under Abstraction) columns contain z’s).

In the Methodology section, two methodologies have almost identical entry patterns, K IR
and L. Thus, methodologies K and L become candidates for final selection and are so ﬂa-s:
noted on the worksheet. Perfect matches may not exist between a software category’s o
capabilities and the methodology capabilities. For example, the B methodology is close o
to matching and could be selected as a valid candidate, unless its absence of the control : 4
decomposition structure would critically affect the project. The user must look for rea- -
sonable approximations in selecting candidate methodologies. He may select a set of
candidates having either less or more structuring techniques than those desired.

In general, completing Step 3 means the user has selected several candidate methodolo-

. . - B - - . . - N . - . - . R
...... al e o ta. a P R R P I W S S . _ N L P S

P e T e L M T TTW T TR T T e T T W ey Y e e
IR SCAR A s oAU A il Al A el A NG AR A R A L R

Path 3 Mateh Table
Structuring Techpiques
Decomposition Abstraction
func data cont data pro
tion trol cess
al
S 1] X
O 2 X X
F 3 X p
T 4 X
w 5 X
A 6 X b x X p 3
R 7 X X X X
E 8 X X X X
9 X
C 10 p X
A 11 X
T 12 X
E 13 X X X X
G 14 X X
O 15 X X
R 16 X X X
Y 17 X X X
18 X b ¢
M A X X X
E B X X
T C X X
H D X
O E X x X X
D F X X X
O G X X X
L H X X
O 1 X X X
G J X
Y K x X
L X p
Figure 2-15 Path 2 Match Table
2.25]
-0
- -_1

el L, O P T T
.- NI . S .
AR T U Y VY DEY. VIR . V. T . S . S

Path 3 Match Table
Structuring Techniques
Decomposition Abstraction
func data cont data pro
tion trol cess
al

S 1 X X
(o] 2 X X
F 3 X
T 4 X X “ €
w L e —— s
A 6 X X X X X \‘ C"&jﬁj
R — % g " t—-“"/
E 8 x x

9 X
C 10 X
A 11 X X
T 12 x
E 13 X X X X
G 14 X X
o 15 X x
R 16 X X X
Y 7 b x x

18 X X x
M A X x x
E B X X
T C X X p
H D X
(o] E X X X x
D F X X X
(o] G X X X
L H X x
(o) i X X p
G J M{ch(s
Y S e e — wen

L X X X X x

N\

Figure 2-16 Fxample Use of Path 2 Match Table

Y Y 3. W
2y
-d

T
3

T T T
: ’ ‘,.“, ..ll BN

ad
)

] [l

RN IR

P s el e

W
B

k et
B
1

gies having capabilities critical to the project’s life cycle phase and software category.

2.4.4 Step 4 -- Compare Scores for Candidate Methodologies

In Step 4 the user scores each candidate methodology and determines the final metho-
dology for his proposed software project. To accomplish this, he will need the Metho-
dology Selection Worksheet and four figures.

He begins by finding the proper methodology score table for his Path and OSL. On
Path 2, he will use figure 2-17 if the OSL is 0, figure 2-18 if the OSL is 1, figure 2-19 if
the OSL is 2, and figure 2-20 if the OSL is 3.

After accessing the correct table for his OSL, he locates the methodology letter under
the Methodology column, then follows that row to the column under the Software
Category number. The intersection of the methodology row and the software category
column contains the pre-calculated score for the candidate methodology. This score is
entered in the Score row, under the candidate methodology key letter, on the
worksheet.

The candidate methodology that best fits the proposed software project requirements
will be the one with a final score closest to zero. That is, if methodology D has a final
score of -35 and methodology F has a final score of —32, then methodology F is the best
fit.

2.5 METHODOLOGY SELECTION - Path 3

Path 3 differs radically from Paths 1 and 2 which use a project’s software category and
significance to key tables that list capabilities and lead to eventual methodology selec-
tion. Path 3 provides a single table for directly selecting capabilities wanted in a
methodology. Although shorter, Path 3 should be used only when a project manager
has the experience to stipulate the specific capabilities he wants in a the final methodol-
ogy. It requires greater project knowledge on the part of the user, and should not be
used as a shortcut method by the less experienced project manager. A Path 3 overview
is shown in figure 2-21.

This Path is used when the project manager knows which capabilities are of overriding
project concern. As stated above, Path 3 ignores significance levels, software categories,
and does not require calculation of a score to select methodologies. Instead, the project
manager examines a table which hsis ratings for capabilities and selects methodologies
based on the strength of those ratings.

', S
. M . b PR

' P T s et e a
RPN Th A N
RO R, ‘

e
Ll

IR
,‘AIJLILL & ‘n' ‘lv LT

Lt
"

EIRaEN

It Ml -_",~ ASLREE AP S Atrhal Sl Sedi e Aauil Auit Al seaitamt iac' e |
t. .- RS e

&0 Path 2 ay
5 Methodology Scores (OSL = 0) N

§ B

SANC

e

Methodology Software : “:;i':

Category o ’:

mah

1 314158 7|8 |9|(10{11 12|13 |14 |16 |16]17 |18 -‘-?"J

A 20121121 (19119124(21122|20| 212420212016 | 23 | 2221 ‘?

B 33 |34 34|37 |34 37|40 (373340 |37 [33]40[33]25]36]37]34 ol

C 23123123120120]26123 |23 (23|23 126 (23 (23|23 |16]23]23 |23 N _:~

D 28 |28 (28126263028 |28 (28|28 |30 |28 |28 |28]22]|31]|28]°27 ;’:';Z-

E 27127 1271271257131 (30|31 2730 |31 (27|30 [|27]|19330]31]27 :—-:‘.1‘

F 40139139140 |40 |40 [41 |39 [40! 41 | 40 | 40 | 41 | 40 | 29 | 42] 39 | 38 TR

G 22119[19| 20|20 (24 ({23124 (22| 23 |24 |22 23|22 |13 |26]| 24122 ' ':4- 3

H 42 140 | 40 | 41 | 41 {45 | 44 |45 |42 | 44 | 45 | 42 | 44 | 42 | 271 1 47 | 45 | 42 - ;

1 24 (21|21 [21[18[26 |24 126124 | 24 | 26 | 24 | 24 | 24 | 17 { 25|26 | 22 _'__ o

J 2733333330 |33[{33]|33f2r{a3[a’|2r]|33jor[19][30[33]2 P
K 35140 {40 1|38 {37 {43 {41 (41 | 35| 41 {43 |35 | 41 {35127 | 40 | 41 | 37
| L 38135(35(138|35140 |41 |38 [38{41 |40 |38 141 |38 |26 |39]| 38|36

WY

Figure 2-17 Path 2 Methodology Scores for OSL=0

T

: '..':

-y

et
;e e

I

BAPLAP I el
N

-4

J o

s
-

)
77 4
R e .
. R . . e,]
. O A K BN NN
; R S 5 e e
o S e TR

=

T
o - ‘
.* ° "‘h =
Y A,
N I. . P
- A I
e S0
.j‘\' ‘.;\..‘;}'
% ',~'?";‘
o . I_'.\

< -,ﬁ
)
]

o 2-28 _

Path 2
Methodology Scores (OSL = 1)

Methodology Software
Category
1 [2[3[a][s5]e]7 8|0 |[10]11]12{13[14[15][186]17]18
A 1|1 jrfaalolelafrfafalelr a1]1]1]2
{ B M (1afraf1z]1s|15[8f16]14|[1815|1418 141014 16] 15
3 C |4(|13|]3|lofl1j4]1]|2]4]r[4]4a4f21]4al1]1]2]4
D |9|8]|8]s s{6f|7lole6|s8]lo]le]ol7lol7]s
AJ E g8l7|7]7]6|9]|8]w|[8]|s8[o9][8]|8]8|[4]8]1w]s
RN F o199]21|18f19]18|21]19 (1821|1921]|14[20]18]19
;- G [(slajafofr|2[1[3|3]1]e2[s|1]3]-2]43]3s
- H 3 [20[2 212223222423 22 {2323]22]23[12]25]24]023
R I sfrfr 11]a]2]s|{sl2]4]s[2]s[2]3]s5]3
! 3 glwlwliunfululwelsiuniunlsinl{s]alsiie]s
S K 16|20 |20[18f18][21]19[20[16] 19|21 [16]19[16[12[18[20]18
N L 19 15]15{18]we|18f1of{1z]19f19]18[r9]ofo|nnf17|17]17
' . Figure 2-18 Path 2 Methodology Scores for OSL=1
N
SRS
"‘A_."v.
SN
B.*- .
o8
b
e
< 2.29
e,

Y
S B
.

o

g 0
" ‘~
™t

el F

§
g

Methodology Scores (OSL = 2)

Path 2

Methodology Software

Category
1|23 |(4|56]|06 |7 |89 [|10[/11{12)13|14}15 16|17 |18
A -18 {-19|-19}-21]-191-20|-23|-20|-18 |-23}-20|-18 [-23|-18 |-14|-21 |-20|-17
B 5|16|6|-3|-4|-7]|-4]-5]-5}-4]-7|-5[-4]-5]-56]|-8|-5]{-4
C -15|-17 |-17 [-20{-18 | -18 [-21 [-19|-15]-21 |-18 | -15|-21 |-15-14]-21 |{-19[-15
D -10 [-12|-12|-14|-12|-14|-16 |-14]-10]-16 |-14|-10 |-16|-10| -8 [-13 |-14[-11
E -11]-13|-13}-13|-131-13|-14 |-11|-11]-14|-13 |-11 [-14|-11 | -11 [-14 |-11 |-11
F 2]-1]-1{0]2]|-4]-3|-3]2}1-3|-4]2]-3]2]-1]-2[-3]0
G -16 [-21]-21|-20]-18 |-20{-21|-18]|-16 |-21 |-20 |-16 |-21 |-16 |-17 [-18 |-18 | -16
H 4 (0o0]Jo}|1]|3j1]0{3|]4]J]O)J1}4]O0O|4]-3]3]3]4
I -141-19]-19}-19|-20[-18]-20|-16 | -14 |-20 [-18 | -14 | -20 | -14 | -13 | -19]|-16 | -16
J Ay 707 -7 -8 1-110-10] -9 1-110-10 .30 3-10 }-01)-11}-11]-14} -9 |-]1
K 3lolo|-2f-1]-1}]-3{-1[-3]-3]-1[-3|]-3[-3}-3]-4]-1]-1
L oj-5|[-5{-2{-3|-4|-3[-4j0]-3{-4|0|[-3[0]-4]-5/[-4]-2

Figure 2-19 Path 2 Methodology Scores for OSL=2

CAnd Bt il Nt A it o Se i it At AV 98 A ied Al el e et AN o A AN pAaCattar S AR DML ACREE Ral Sl I Salnall)

Path 2
Methodology Scores (OSL = 3)

Methodology Software
Category

(R (=l ZQIDIBOIQD]>
0
—
-~
U
(3
-
0
™o
Pt
]
[
(=]
0
[
3
.
[~
=]
0
(3]
(Al
0
[\
LS
0
—
-3
g
[
[,
0
[
(=]
0
—
-3
.
(=]
(54
'
[eoy
-3
1]
—
(=]

Figure 2-20 Path 2 Methodology Scores for OSL=3

2-31

SELECT
FINAL

METHODOLOGY

PATH 3
CAPABLITIES
AND RATINGS

TABLE

EVALUATE
CAPABLITIES
AND RATINGS

Figure 2-21 Path 3 Overview

FINAL
METHODOLOGY

Figure 2-22 lists the capabilities and ratings, where applicable, for methodologies A
through L. The table is divided into three sections: requirements, design, and universal.
The ratings range from 0 to 3; 0 is the least effective rating, 3 is the most effective rat-

ing.

In following Path 3, the user locates the capabilities of overriding concern and finds the
methodologies which most effectively incorporate those capabilities. He may start with
any of the three sections, depending on his areas of greatest concern. A simple way to
select among candidate methodologies is to sum each one’s ratings and select (among)
the one(s) with the highest score(s). There are numerous ways to select methodologies
using the Methodology Ratings Table. They can be as simplistic as comparing the
scores of one capability or as complicated as comparing methodologies relative to a
user-defined fictional-ideal methodology, where the user chooses the individual capabili-
ties and their levels of support.

2.6 OVERALL CONSIDERATIONS

It is important to remember that the first two approaches (i.e., Path 1 and Path 2) for
determining the best-fit methodology for a proposed software project represent an
attempt to quantify and use three diverse areas of knowledge: (1) the Air Force missions
usage and expectations of software development projects, (2) our assessment of
specification methodologies available to the software developer, and (3) the project
manager's knowledge of what he wants in a methodology specification for his proposed
software project. The tables were constructed from samplings taken from the mission
surveys and to the extent the surveys represent the missions’ software usages and
requirements, the results should be accurate. However, evaluation of the final methodol-
ogy selection should include a careful review of the characteristics of that methodology,
found in section 4.0. To find out the names of the candidate methodologies, refer to the
Methodology List Table (figure 2-23).

Likewise, Path 3 is even more dependent on the project manager’s knowing which capa-
bilities would be most useful during the project’s life cycle. This Path is highly subjec-
tive and is not recommended for use by an inexperienced project manager. It does,
however, provide an expeditious way to select a methodology. If the project manager
wanted to verify his choice, he could follow Paths 1 or 2 and compare the results with
his Path 3 selection.

It is the final responsibility of the user to ensure that a selected methodology is feasible.
Management, availability, hardware restrictions, or other considerations may make the
chosen methodology less feasible than another candidate. For example, automated tools
for a methodology may require a particular CPU to which the project manager has no
access. In this case, selection of that methodology is a useless exercise. The user must
exercise common sense in limiting his candidate choices to methodologies that fit within

2-33

‘on " a

P R, T S DRI .‘ _ s et
P T ot e e VA ta e e c . Sl A e
- - . . : P Ao R PR Vo
. BN - : R » . N) e
PR . BN « R R €, L e Tt e B e ,
k<. Lo .50 Tal e I IR IR e . EEPL SFN

f
‘e
N
.
a

P A e

CAMEMMEL P i B o ducy I 20aih el Jaanih 4 - - r——
- e RS e Ve e LR TR . L m—— PRSI A - A s e e~ G paeper |
. -~ - - - - - - . . - " -

-".

[
Yoot
f

4 Lg..g._"'-,!..y_“‘

TABLE OF METHODOLOGY RATINGS

Capabllity Methodology
Al/B|Jcip|E[FP|Gc|[HiI][J][K]|L

|
|

REQUIREMENTS
state modeling
data flow modeling
control low modeling
object modeling
timing performance spec
accuracy performance spec

DESIGN

functional decomposition

QlOoi=in|w|o
WO [W[QO |-
sl O W IO
O e (N |W 0O
e DO | O~
0 00 | e [s fe
RNICIW|O|O |
RIO|WIOC|O |=
QIO |W|[O|r=|m
WlWW|C|O |-
SlWlw N | |IO
[=RE~RE~RISE LN)

data decomposition

control decomposition

data abstraction

process abstraction

data base definition

concurrency /synchronicity

module interface definition
formal verification

configuration management

completeness analysis

consistency analvsis

VW w|O|IC|w|w|olw|ojojo|o

Ada compatibihty

Ol |+ | O |C s | [= OO |t]|]
WiNnl|WIWO|Wwlw|[Oolw|wlwi(o oo
QIR || |CO|C|O|CIC|O|C|WIW]|w
W st |rt o O IO [fem (W [O |O IO | O
| Wirs | (OO === O]|W|O ||
W |[WIWIOIN[O]r=e [WO O | | |
W rst |rt ot O et OO O WO 00 |4
WIW|W|w|O|=|w|wWwn|Oo|w|[C]|
W[t |t s O | O s jre O [WIW D [0][0
O |WIWw|O|Clw]|w|Ojmi=]to|n|O
WIRN[WIW| N [WI[W|OTWIt | |rm =t

w

code behavior notation
UNIVERSAL
prototyping

o

test plan generation

automated tool available

traceability

trapsistion between phases

validation

usability

matunty
training /experience level

‘- MIL-STD documentation

— W]~ o=]Olo
D | W= WlW[W|W[O]O
LR Rl ol I XN K0]
—{rd [o |re [0 | [| D | ome
R [W[o|Wtd |~ | = O (OO
S| W Wl [W[W[W IW[|ODO]
Ol ol s i O IO O
vt ot fot (ot (O [COPCO|WR]CO |
Qlwlwwjrvivw|=|i=lolo o
Ol 3| |[W[O|O|W[IOC W
[CRE RN PO FXR FXN SRR RN Y

v | O W2 | O[O |

N Figure 2-22 Path 3 Capabibtie< and Ratings

METHODOLOGY and TOOL LIST it
e
Key [Acronymn Name L
Mature Methodologies -
A DSSD Data Structured Systems Design ,
B HDM Hierarchical Development Method .
C SADT Structured Analysis and Design Technique _ ;:
tools: ~':‘7:
C.a TAGS =T
D SA/SD Structured Analysis and Structured o
Design (Realtime Yourdon)
tools:
D_a ARGUS T
D b EXCELERATOR - «_~_
D_c PROMOD
S
E SCR Software Cost Reduction - Navy ot
F SREM Software Requirements Engineering Methodology
G VDM Vienna Development Method :‘_: :.
Evolving Methodologies 'E:
H DCDS Distributed Computing Design System ‘_V;,:f
I JSD Jackson System Design D)
J PAISLey Process-oriented, Applicative, ‘_
Interpretable Specification Language
K SARA System ARchitect’s Apprentice
L USE User Software Engineering Methodology
Figure 2-23 Methodology List Table

Py e ‘g o La-a oy .,
Y . N 3 i Twenyw x AP e Al et et et st b b an ten & o At Saf it o ov Bat R ion San aov das e e~ oo e Au g |

.";:E::.'j

'.1

. '.‘~l

his project’s environmental constraints. ::h-‘:r::':
RS

h) 3 . 2

2.7 EXAMPLE USE OF GUIDELINES - C°l SYSTEM R
T

2

The first part of this section provides the guidelines for selecting a methodology an: R
supporting tools for a project, by software category and with full consideration given to RN
life cycle phase. i:’:.,‘:‘:‘"
R

The second part of this section is an example of how the guidelines and tables are used)
-- in this case, for a C3] system. e
The objective is to present several C3I examples using the three paths previously i
defined. A primary consideration imposed on each example will be compatibility with v!-tf—««..q

the Ada programming language. Of course, a project manager uses more than a single o
consideration in determining which methodology best fits his future project. In deriving .
the following C3] system requirements and design considerations, reference was made to
the (3] mission appendix, Appendix C, actual requirements set forth in C31 RFP’s, and s
working knowledge of the requirements for C3I software and system projects gained by [—:__j
Boeing Aerospace engineers during the last decade.

2.7.1 Path 1 Example C3I System -]
, . o i
The example depicts development of C3I system software for interactive displays. The R

example system is ground-based and receives data ofl-line that has been collected by air- L
borne sensors. The overall system requirements are for a prototype system that will Sy
process data collected by airborne sensors and classify types of ground threats and their o
locations. Software requirements include: the ability to control and respond to cursor
location on display, the ability to access and change an associated data base, user
friendliness, and use of a high-order language, such as Ada. Additional requirements are
for a good data base management system and the compatibility of data products during
all phases of the software development life cycle.

The four steps for determining the proper requirements methodology are as follows:

2.7.1.1 Step 1 -- Choose the Overall Signifizance Level (OSL)

First, the user examines the Significance Level Table, figure 2-2, and fills out the Metho-
dology Selection Worksheet, figure 2-3. Note that for this example, the Significance
Level Table was examined and the following decisions made:

2-36

"N “. '.- ~
e et N A . "
----------------- N e e e e . .

....... . S T R R RIS
NP et A R . :
--------- R NS N RO A WA T e S .
. . R B v W _‘~.\‘A [y IR NP R g e - .o~ ~ . - .
Lt - A . . W - », Wl WY W .

PSRRI RIS SV .ZILL"J._S&".-_ "‘n__l_. A A A T e e L T e L -

1. The Cost consideration was Some Cost Flexzibility and rated a significance level
{SL) of 2.

to

The Criticality consideration was Nuisance Impact and rated an SL of 1.

3. The Schedule consideration was Normal Schedule Constraints and rated an SL of
2]

.

4. The Complerity consideration was Moderate Complezity and rated an SL of 1.

5. The Development Formality consideration was Normal to Strong Contractor Con-
trols and rated an SL of I

6. The Software Utility consideration was Prototype and rated an SL of 0.

fl

The Reliability consideration was Respond correctly to nominal conditions and
rated an SL of 0.

8. The Correctness consideration was functionality and constraints mzt and rated an
SL of 1.

9. The Maintainabslity consideration was predict fmpact of changes and rated an SL
of 1.

10. The Verifiability consideration was Full complement of documentation; design
documentation updated too and rated an SL of 2.

These significance level values were entered on the worksheet under the SL column.
Figure 2-24 is a completed worksheet showing the above SL values.

The ten considerations were weighted. Having no particular information as to the criti-
cal nature of the considerations, a normal weighting of I was assigned to all considera-
tions, except for maintainability, which was weighted with a 3 (since the project
manager might justly conclude that maintainability of the completed project cannot be
overemphasized).

The SL and weight values were multiplied on a row-by-row basis to fill in the Product
column.

The Wesght and Product columns were summed. The weight sum was 12 and the pro-
duct sum was 3.

The Overall Significance Level (OSL) for the project was the product sum divided by
the weight sum. The result of this division was 1.08 and needed to be rounded up or
down to a whole number. The rounding rule, listed in paragraph 2.3.1, is two-part: (1)

~ R
-, . PR R S0 . o . . to- . o

« O, e el S o e e B - . 1
T e A ot L o A S T S T S T T T 2,

METHODOLOGY SELECTION WORKSHEET

o 3
SOFTWARE TO BE ACQUIRED Znteractive Dystnay (L System

W TR TrIw T Yy

LIFECYCLE PHASEcccc....... _x_REQUIREMENTS ___ DESIGN
CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) | (1 =NORMAL) | (WEIGHT
FIGURE 2-2 X SL)
COST ¥ 5 / 2
CRITICALITY / ,)
SCHEDULE 2 / 2
COMPLEXITY / / /
DEVELOPMENT
FORMALITY / ' /
SOFTWARE
UTILITY o ' o
RELIABILITY o ! o
CORRECTNESS /) p
MAINTAINABILITY , 3 3
VERIFIABILITY 2) 2
siv S /2 /3
/3 = /. 0fF

OSL = SUM OF PRODUCT / SUM OF WEIGHT = /2

SOFTWARE CATEGORY

round down > |
i 1 4

CANDIDATE METHODOLOGIES

KEY

F

c

SCORE

22

4

Figure 2-24 C3I Path 1 Example
Use of Methodology Selection Worksheet

[4

i O
.l ‘l f 'I
AT

PP
TR Y

V,A'..!_
a0
PR R

the consideration is found with the highest weighting and its corresponding SL value
noted, (2) if the SL is 2 or greater, the OSL is rounded up; if 1 or less, it is rounded
down.

In the example, the consideration having the highest weighting (of) was MAINTAINA-
BILITY. The corresponding SL. was 1. Since the rule is to round down when the SL of
the highest weight (for a consideration) is I or less, the OSL was changed from 1.08 to
1. Note that if two or more considerations qualified as having the same high weighting,
we would have picked the one(s) with the highest SL as the rounding determinant.

2.7.1.2 Step 2 — Select the Best-Fit Software Category

The Software Categories Table, figure 2-6, is examined for the software category that
best fits the nature of the project.

Software Category 14, Data presentation, was selected as the best fit. The number 14
was recorded on the worksheet in the Software Calegory row.

2.7.1.3 Step 3 -- Designate Candidate Methodologies

Referring to the Path 1 Match Table, figure 2-7, we examine row 14 in the Software
Category section. We note that row 14 contains two z’s corresponding to modeling
techniques and one z corresponding to accuracy specification. In the Methodology section
of the table, we search for rows that also contain z’s for the same columns. Examina-
tion reveals that the F methodology matches exactly (i.e., it has an z in every column
required by software category 14 -- plus three additional z's). Thus, an F is entered on
the worksheet as a candidate in the Key row. Methodologies A, B, C, D, E, G, H, I, J,
and K contain z's for two of the columns. For the sake of brevity of the example, it is
decided that data flow modeling and accuracy specification are the most important
capabilities to provide. Of the methodologies listed above, only C provides capabilities
for both data flow modeling and accuracy specification. Thus, a C is entered on the
worksheet as another candidate methodology. Figure 2-25 shows the Path 1 Match
Table with the above rows circled to illustrate Step 3.

2.7.1.4 Step 4 -- Compare Scores for Candidate Methodologies

As discussed in paragraph 2.3.4, Step 4 requires the user to locate the proper methodol-
ogy score table that corresponds to the OSL of the project (the OSL is on the
worksheet). The OSL for the C3I example is I and figure 2-10, Path 1 Methodology
Scores for OSL of 1, is used. A C3I Path 1 example use of this table is shown in figure

2-26.

2-39

TN

Path 1 Match Table
Modeling Performance
Techniques Specification
Flow
State Object Timing Accuracy
Data Control
S 1 b3 X X
O 2 X X L
F 3 X X .
T 4 X X X e
W | 5 x x x X x e
A 6 X X X X j
R 7 x x X x X ;‘:."
E 8 X X X X R
9 X X)]
C |10 X X X x X 4
A 11 X X X o }
T | 12 X x x e
E — 1 ;-FT X Y — ———, :
G 14 X X X
O " — e —ge s osmo—
R 16 X X X
Y 17 X X X X
18 X X
;__hT A X X X
E | pab x x"_—'#?‘
T C X X b X
H o x ———p— X) & - el
0] " Sirenp A X X A
F X b X X X X ™
L o —]
L H X X X
(6] I X X X
G J X X X X
Y K X X X
L X X X
o
b
! Figure 2-25 C*1 Path 1 Example

Use of Match Table

A A SR A A e el s R R i Al VR MR Y A A A e SO AR AR S B - ARePi i Y A el Sl Aol i Snl Al Sdt el A

Path 1 Find
Methodology Scores (OSL = 1) Software

Categor 4

Methodology Software /
Category

1 (234|507 [8][0of10[11]12]13[14 16
A 2101]1 3faf3fefa]sfel-1]21p\4
16 (12121415 [1afa8f15]16]18 {14 [16 |18 | 156 A1 |16
(e (4 lsis]s|alslelafalolsa]2 é 2 J 4
D 10o]9]olofo]12]ef10f10] 9 12]10] 9|70/ 1¢/]12
9l6|6|/s|6]lo]s]w]o[s]o]o]s]oe 9
U (F) of{20 20 212321231922 23|21]22]23 220 17] 22
GAJ|si{3[3]3]r|rfr]2ls{1]1][s]n -1[6
H \[[|2s[18[18]18|22f22]22]23]as|22|22]25]22]25]13]27
1 \l]e]ala]-1]-2]4]r]s]e]lr]s]6]1]e6]2]4
J \Vinflwjaalfs||sjue|nfs{[njis[n]se[n
K 18[(23]23]22(23]26]23]|26]18] 23|26 18] 23 18] 1422
L 18[1s]15]19 15191917 [1s] 19 1018 19f18]12]18

r:n"\cl_ Heﬂtodo[
Keﬁ LG‘H‘GV‘S ojj

Figure 2-26 C3I Path 1 Example
Use of Methodology Scores for OSL=1

5

MICat I aMIR et i grag
.

AR ANIE A St A it/ A il ool B Aot ol Sa kol A M o S AP S N S i S AR i 4 B A A S o S e e o ey

The user finds rows C and F and follows these across to column 14. The intersections of
these two rows and the column contain the scores for the two methodologies, when
used for a project of software category 14, provided the OSL is 1.

The final selection is made based on which key letter’s score is closest to zero. In this
example the scores are:

1. Methodology C score = 4
2. Methodology F score = 22

The methodology whose score is closest to zero and that best fits the C3[project is
represented by the key letter C. To find out the requirements methodology selected, the
user refers to Methodology List Table, figure 2-23. Note that the methodology selected
is the Structured Analysis and Design Technique (SADT) methodology.

The final step is to read the SADT methodology description in section 4.0 and ensure
that it generally meets overall project environmental considerations.

Remember that additional capabilities listed at the beginning of this example included
compatibility of life-cycle products and compatibility with Ada. In reviewing the
description of SADT, we find the following:

1. SADT suppcrts decomposition very well. The diagrams record both data and con-
trol flow information.

2. SADT has no basic incompatibility with Ada, although the diagrams it produces
do not directly map to Ada features.

3. TAGS and STRADIS are independent tool sets that support the SADT methodol-
ogy.

4. SADT is mature.

(s}

A manager can learn SADT techniques in less than a month, while a developer
may need from one to three months to fully understand all its applications.

From the above, the user may assume that SADT is moderately user friendly (doesn’t
take long to learn, that it supports life-cycle phases (through use of graphics products),
that it is readily available and that it has supporting tool sets. Therefore, SADT can be
considered mature and low-risk.

Should the project manager be dissatisfied with the final selection, he may examine the

descriptions on his other candidate methodologies for one more compatible with his pro-
ject requirements. His other alternatives are to try the Path 2 approach (i.e., select the

2-42

T w T --——--v--—-v‘v'v-v'-‘,v'-T-‘rt

T
M i Bage e o i et e s ek i A A MR e S R A i i S e A E it Adiatediat Subofiait Babe R -

candidate methodologies using design considerations), or the Path 3 approach (i.e., select
the candidate methodologies on the basis of those capabilities that are of overriding pro-
ject concern).

The point is, no set of tables can adequately address all the variables needed to select
methodologies for all future software projects and be correct every time. This document
contains guidelines to aid the project manager in making his selection, but he must be
the final judge of that selection.

2.7.2 Path 2 Example -- C3I System

The Path 2 example approaches methodology selection from the viewpoint of design
capabilities. The example is for an airborne software system for use on an unnamed
special purpose computer, but for which the software can be developed, in Ada, using a
standard Air Force CPU. Further, the C3I software must be interactive with remote
terminals, user friendly, incorporate a special-purpose data base, and support graphics in
near-real time.

I e
| S . ibe

"y
'
bl

The four steps for determining the proper requirements methodology are as follows:

2.7.2.1 Step 1 -- Choose the Overall Significance Level (OSL)

First, the user examined the Significance Level Table, figure 2-2, and filled out the
Methodology Selection Worksheet, figure 2-3. Note that for this example, the
Significance Level Table was examined and the following decisions made:

1. The Cost consideration was Normal cost constraints and rated a significance level
(SL) of 1.

o

The Criticality consideration was Mission Impact and rated an SL of 2.

3. The Schedule consideration was Normal Schedule Constrasnts and rated an SL of
2.

4. The Complezity consideration was Greater Complezity and rated an SL of 2.

(s}

The Development Formality consideration was Strong contractual controls; Formal
reviews and rated an SL of 2

6. The Software Utility consideration was Real-time, Avionics, C°I software and rated
an SL of 2

2-43

......

............

7. The Reliabslity consideration was Faults removed ASAP and rated an SL of 2

8. The Correctness consideration was smplementation validated against the design
specification and rated an SL of 2.

9. The Masntainability consideration was Eztent of changes optimally localized and
rated an SL of 3.

10. The Verifiability consideration was Requirements through source code documenta- e
tion always up-to-date and rated an SL of 8. RS

These significance level values were entered on the worksheet under the SL column. -
Figure 2-27 is a completed worksheet showing the above SL values. and

L d
The ten considerations were then weighted. Having no particular information as to the .

critical nature of the considerations, all ten were weighted normally, i.e., with a 1.

The SL and weight values were multiplied on a row-by-row basis to fill in the Product
column.

The Wetght and Product columns were summed. The weight sum was 10 and the pro-
duct sum was 26.

The Overall Significance Level (OSL) for the project was the product sum divided by
the weight sum. The result of this division was 2.6 and needed to be rounded up or
down to a whole number. The rounding rule, listed in paragraph 2.3.1, was two-part: (1)
the consideration with the highest weighting was found and its corresponding SL value
noted, (2) if the SL was 2 or greater, the OSL was rounded up; if I or less, it was
rounded down.

In the example, all the weightings were normal (i.e., 1) and thus all qualified as being
“highest’ weightings. When two or more weightings qualify as being highest, we check
the corresponding SL.'s for their highest values. Thus, in this case, we find that two
considerations have SL's of 8 (maintainability and verifiability). Since the SL used as

the rounding determinant was 2 or more, rounding was up and the OSL changed from
26to 3

2.7.2.2 Step 2 -- Select the Best-Fit Software Category

The user examined the Software Categories Table, figure 2-6, for the software category
that best fit the nature of his project.

WL A e W e e e T T LT A e TR NS N T N T T T T T T T T T R T I T N TR R T T TR IR IR T TN
- - . . - - - - .~ - - . - " et . . - - A L) - . - - - - -

R
o
A
METHODOLOGY SELECTION WORKSHEET "
SOFTWARE TO BE ACQURED ealtime C°Z Software ”%
LIFECYCLE PHASE _ __REQUIREMENTS _x_ DESIGN]
CONSIDERATIONS SL WEIGHT PRODUCT
(0,1,2, 3) | (1=NORMAL) | (WEIGHT ~
FIGURE 2-2 X SL)
COST | / !
CRITICALITY 2 / 2 :
SCHEDULE 2 / 2
COMPLEXITY 2) 2 3
DEVELOPMENT o
FORMALITY 2 ’ 2 -
SOFTWARE
UTILITY 2 / 2 o
RELIABILITY 2 / Z
CORRECTNESS 2 / 2]
MAINTAINABILITY 3 / 3 3
VERIFIABILITY / 3 -
B SUM /0 24
s 2t - 2¢
L OSL = SUM OF PRODUCT / SUM OF WEIGHT = 75
round up > 3
- SOFTWARE CATEGORY gl%
Tl CANDIDATE METHODOLOGIES
KEY E T X L
SCORE -33 -39 -0 -as

Figure 2-27 C3 Path 2 Example

Ca Use of Methodology Selection Worksheet
<t
o

2-45

ST R E R
Le » 2 . . [. +
. . 2 :' "- . [l -~

Software Category 2, Event Control, was selected as the best fit. The number 2 was
recorded on the worksheet in the Software Category row.

2.7.2.3 Step 3 -- Designate Candidate Methodologies

The user referred to the Path 2 Match Table, figure 2-15, and examined row 2 in the
Software Category section. He noted that row 2 contained three z's corresponding to
structuring techniques. He looked for rows in the Methodology section of the table that
contained z’s for the same columns. His examination revealed that the L methodology
contained the same structuring techniques needed by the category 2 software, along
with additional techniques. No other methodology contained all three of the category 2
software techniques. At least two of the structuring techniques desired were supplied by
methodologies A, C, D, E, F, I, and K. Since Ada was designed to use the concept of
abstractions and since one project consideration is Ada compatibility, the other candi-
date methodologies selected from the list above were those that supported the process
abstraction technique. The candidates then became E, I, K, and L. Figure 2-28 shows
the Path 2 Match Table with the above rows circled to illustrate Step 3. These key
letters were entered on the worksheet under the Candidate Methodologies section in the
Key row.

2.7.2.4 Step 4 -- Compare Scores for Candidate Methodologies

As discussed in paragraph 2.3.4, Step 4 required the user to locate the proper methodol-
ogy score table that corresponds to the OSL of the project (the OSL is on the
worksheet). The OSL for the C31 example was 3 and figure 2-20, Path 2 Methodology
Scores for OSL of 3, was used.

The user found rows E, I, K, and L and followed these across to column 2, the appropri-
ate software category. The intersections of these four rows and the column contained
the scores for the four methodologies (when used for a project of software category 2,
provided the OSL was 3).

The final selection was made Lased on which key letter’s score was closest to zero. Fig-
ure 2-29 provides an example of the use of this table. 'n this example the scores were:

1. Methodology E score = -33

o

Methodology I score = -39

3. Methodology K score = -20

2-48

| i
L

1
'
i

)

Y
i
-«1

1
z

=t

W

‘jl’.

~
’
L

SR A
AR

N AR R N

b
Y

11
1]

n d oo AN L S o e ., ow D e
i SN ACA R Tkt AR A A B A A S RO S AL I A A I IEERIEIRA e Ml e T DR

2L Ay s S na

Path 3 Match Table
Structuring Techniques
Decomposition Abstraction
func data cont data pro
tion trol cess
al

S e ¥ X wm—gs
O C 2 X X X
F S — X X
T 4 X X
w 5 x
A 6 X X X X x
R 7 X x 3
E 8 X X X x

9 X
C 10 X X x
A 11 X x
T 12 X X
E 13 X X X x
G 14 X X
(0] 15 X x
R 16 X X X
Y 7 X X X

18 X X
M A X x X
E B X x
T C - e e a—— —
H F X x <
(o) < E X X X X
D '~ —— ——pge— X
(8 G X X X
L — —_—
o (‘;r X X X X >
G
Y K x

L X X

Figure 2-28 C3] Path 2 Example
Use of Match Table

2-47

R T . S A A IR S S A A LG R M — - T e e e —
e e ST, L . N N REEARAA AR RN S s AR Al AP At T i dahadna s dian des S St S San At EIE 2]

Path 2 sl
Methodology Scores (OSL = 3) Y

Methodology Softr re e
Category N"j

-37 | -39 -4\ |-38Y-42{-45 {-41]-37 | -45 [-42[-37 |-45|-37 {-20]-43 .41]-36

40 }-37 |$40 |-43 | -40 {-34 | -43 | -40 | -34 | -43 |-34 |-29 |-43 |-40 | -34
-291-23[-35}-35]-30
-301-26 [-36 | -32 {-30
-17 {-16]-24 | -24 | -19
-35)-32{-40 | -39 }-35
-161-211-221-18(-151-22{-211-15}-22{-15]-18}-19|-18]-15
-331-28|-41/-37]-35

3
W
o

'
-
—

'

]
Q9

[}
b
[=

[
o
w

’
W |2
<o

’
w
o

[
b
w

[}
-
[

’
w
w

[
e
w

)01@0&>
.’.o'.
SEE-3L-

'

‘A

(o8]
L A)
IJ’\J
el kR IR
.
(3 N N KN

< |
+ 1 v |0
Q(&C&

1o |[—
[B e)
ro]w|w
D>
*r e |2
19l |
| |00
. { |
wlwlw
o e [O
~ 1o [
—
|5 1d
|.°.‘
Q8|8
LI O
80000

N>
.l‘ll
2|83
vo s
S 8%

NEVIERE:E EDE

a0 o

-194°-25 5

'
to fro |t —
|3 | ~? we

L]

w

©

[l

-

o

1)

S

o

9

W

-3

&

w

[

FS

D

'

03

(=]

]

.

L

t

i
-20(-23}-25(-22-221-25]-237{-22-25)-22-18/-26]-22]-20
22 251-19[-25(-261-191-25[-19(-19-27 }-25-21

o Figure 2-29 C31 Path 2 Example
! Use of Methodology Scores for OSL=3

e 248

O AP) - I s N A) ‘ X . R ‘.‘:.'-., RN

N o e . N . N . - . . .
AT - W . R . - - -

R P I P R Pl LI Te B

N RN " RN TR T + - - - - - .. Y - . . .

[SR .Y, e “‘E“‘\h“". - P ST G A

" .
-

L A D L T
- L PR « .

..'-::_ : 4. Methodology L score = -25

Of the four methodologies, the scores for K and L were closest to zero. Those two
S methodologies were developed and exercised in an academic environment and needed to
o be closely inspected by the project manager to ensure they adequately addressed his pro-
ject requirements.

The methodology whose score was closest to zero and that best fit the C3] project was
represented by the key letter K. To find out which requirements methodology was
selected, the user referred to Methodology List Table, figure 2-23. Note that the metho-
dology selected was the System ARchitect’s Apprentice (SARA) methodology.

The final step involved looking up the SARA methodology description in secticn 4.0 and
ensuring that it generally met overall project environmental considerations.

Remember that additional capabilities listed at the beginning of this example included:
data base management, user friendliness, compatibility of life-cycle products, and com-
patibility with Ada. If, in reviewing the description of SARA, the project manager was
dissatisfied with it, he had the same recourse described in the Path 1 C3I example,
namely that of reading the descriptions for methodologies E, I, and L; and determining
whether one of them was a better fit for his project. His other alternatives were to try
the Path 1 approach (i.e., selecting the candidate methodologies using requirements con-
siderations), or the Path 3 approach (i.e., selecting the candidate methodologies on the
basis of those capabilities that were of overriding project concern).

As discussed at the end of the Path 1 C3] example, no set of tables can adequately
address all the variables needed to select methodologies for all future software projects
and be correct every time. This document contains guidelines to aid the project
manager in making his selection, but he must be the final judge of that selection.

2.7.3 Path 3 Example -- C3I System

Path 3 is provided for the project manager who has learned from experience those capa-
bilities he wants in a methodology. Whatever the project, he approaches it from one of
three viewpoints: requirements, design, or universal capabilities.

For example, suppose he felt the methodology must be strongest in the requirements
capabilities. He turned to figure 2-22 and examined the Requirements section of the
table. Inspection revealed that the F' methodology was best and, he noted, its design and
universal capabilities were strong. Figure 2-30, C3] Path 3 Example Use of Methodology
Ratings Table, shows the selection process.

Y YN Y eV
M

AR e At et Tt
- % oom L om T e T - e T

TABLE OF METHODOLOGY RATINGS

v — i
AR TR A S i JAsSatiii e B e T A <0 5 e S ae A an Ava

Capabllity

Meti@iology,

A|B|lc b |EfdFr]c{u]1

REQUIREMENTS

-

state modeling

data low modeling

control flow modeling

object modeling

timing performance spec

accyracy performance spec

Cloi=In]w]e
N =R (LR I-RE--R T
e [OIWIN]|O
O v = 0[]0
e [N O] |se
0|00 [e [t |0 | Q0
wilo|w|o|lo|--
ClO WO = [

IR WO O

OlwlWwin]n]|Oo

DESIGN

~
Q

functional decomposition

data decomposition

control decomposition

data abstraction

process abstraction

data base definition

concurrency /svachronicity

module interface definition

formal verification

configuration management

completeness analysis

consistency analysis

Ada compatibility

code behavior potation

WWWIWIO|= [N]|Win|[O|Wlo NV N IO |IW|C|Io |-

Q=== O |C|=|= |~ |O |||
W |WIWO|Ww|C|Iv]|wlw]|Clelo
Qlu|=j=|O|ClC|CjQ|o|C|w]lwiw
Wirs | e O O = =] |||
B[O lme [t O[O 0=t [0 0= |03 || [0 (0O
WIR]WIWIOIN[| = [W][O | |re ||
W vt frs 4w O+ RO WD [Q[WD[O]J0D |
Wl | O[O [o] || [ro]|

W[Wwiw|oIQlwlw|O|lw|olo(olo

CINIWIWICICIWIW|O]=lmInIv]|O

UNIVERSAL

N
»
N
£

prototyping

test plan generation

automated tool available

traceability

tranpsistion between phases

validation

usability

maturity

training /[experience level

MIL-STD documentation

R W] |O= OO
Qlm |W]l~ | WW]|W]|WI|S|Q
ettt o o [O O[O
O|=|o|~|~|~]~|lo|o|o
bt ot ot s [CO (OO QOO [{OMO
OQIW[N| VN | |OIOIOC

e RO RO v 0O |0 (LD [O |
| Wl [WD = | =IO |0 |0

Q=i |~ WO [[W|[QO|W

NI IW W WIWINnIO

—---rorawwowowgwwmwwwwowwwnung\ooowmn

uwww—wwwwow

X
b

F=10+224+423

e PP Y

Figure 2-30 C* Path 3 Example
Use of Methodology Ratings Table

2-50

P O N

O\

LR R UVUYTETO T

e L1 AAAA_L "

A L; ORI

LA el d el el b S St o St o b AAR AN

o adenss dhadh s die g i e At i i e

Suppose the project manager felt the design life-cycle phase was the most important, so
he looked for the methodology with the most strength in design capabilities. He
selected the L methodology and noted that it was weaker in the requirements area, but
moderately strong in the universal capabilities area.

Finally, suppose he decided that the universal capabilities were most important for his
project and chose two methodologies, F and H. Methodology F was already chosen as
the best candidate in the requirements capabilities area; methodology H was nearly as
strong in the universal area, stronger than 7 in the design area, but weak in the require-
ments phase.

The project manager may have examined capabilities, checking in all three areas
(requirements, design, universal) or in only one area. He may have summed scores of
selected capabilities for the three methodologies and selected the highest. If he did this
for all the capabilities, he found that the sums were: F = 55, H = 54, and L = 52. A
spread of three points wasn’t much. His final resort was to refer to the Methodology
List Table, figure 2-23, where he found the names of his candidates, then read their
descriptions in section 4.0.

In the previous examples for Paths 1 and 2, we discussed how this document contains
guidelines to aid the project manager in making his selection, but that he must be the
final judge of that selection. This Path 3 example is no different. It is a short-cut tech-
nique for the experienced manager to use in finding a methodology for his project.
Again, the final decision is his and must be based on his experience in project manage-
ment.

2.7.4 Blank Worksheets

The following blank Methodology Selection Worksheets are included as “‘tear-outs” for
use by project managers during methodology selection. If all copies of the worksheet
have been removed, figure 2-3 can be removed from this guidebook, reproduced, and
returned to the guidebook for the next user.

.\’«. - .

B R T L PRI - - - .« L -
PN U L U Ut I S T S, Py RPN W S g e e e et e e,

1

T ARSCASIOR

PSRN

"
7 ..
S

y Iaih BaThile Jaigh ¢ LT T
1 I 4 VoLt e sl
K B P 1 [
S T, A
=

'—f‘]"'f"rl“
(]

r

0 f)
Pall’
*. R T P
« B L
- SR

»

v v e
N K « 4
-, .

) oo 4
Al

B o
N -

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
................. REQUIREMENTS ___DESIGN

LIFECYCLE PHASE

CONSIDERATIONS

SL
(0,1, 2, 3)
FIGURE 2-2

WEIGHT
(1 = NORMAL)

COST

PRODUCT
(WEIGHT

X SL)

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
UTILITY

RELIABILITY

CORRECTNESS

MAINTAINABILITY

VERIFIABILITY

SUM

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

SOFTWARE CATEGORY

CANDIDATE METHODOLOGIES

KEY

SCORE

worksheet-1

LTATET T T e e e e

RS N .
ek bt e s B dieadlh

FOPE
=

P
S bl i

Tw 42 At ancaw e o e e iai b tedired b A GA Sl S AR i AR Sl A AR A RACAAC A SN v T i
- . -
.\.' -l .'-
L - Y
. B
n‘.\‘ -
,."‘.-,. RN

x
andh,

METHODOLOGY SELECTION WORKSHEET _4

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE REQUIREMENTS DESIGN

[
N
+ 1
(Rl
I_'\‘.
Vo0
-
v
i -
}“' .
oo
O
[
N

CONSIDERATIONS SL WEIGHT | PRODUCT o
(0,1,2,3) | (1 =NORMAL) | (WEIGHT s

FIGURE 2:2 | XsL) |

COST
CRITICALITY
SCHEDULE
COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
UTILITY
RELIABILITY
CORRECTNESS
MAINTAINABILITY
VERIFIABILITY

SUM

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

SOFTWARE CATEGORY |

CANDIDATE METHODOLOGIES

KEY
SCORE

p
T
g
Lo
S
S
P

Worksheet-2

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE —REQUIREMENTS _DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0,1,2 3) | (1=NORMAL) { (WEIGHT

FIGURE 2-2 X SL

COST
CRITICALITY
SCHEDULE
COMPLEXITY

DEVELOPMENT
FORMALITY
SOFTWARE
UTILITY
RELIABILITY
CORRECTNESS
MAINTAINABILITY
VERIFIABILITY

SUM

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

SOFTWARE CATEGORY
CANDIDATE METHODOLOGIES

KEY
SCORE

Worksheet-3

..........

.......

. , -‘ " >
RS \

.)]‘A .r\-hh_n .h\y YOS .A .A.lu\‘.n\‘_m.n Y. 0 L\,r,..\ LJA_‘_F.__I\ s

?-1-;-.v\-.vvv-r"v."r'.'«' AN o LAt e el g o il o Ay M j
.
¥
| METHODOLOGY SELECTION WORKSHEET
SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASEo......- REQUIREMENTS __DESIGN
N CONSIDERATIONS SL WEIGHT | PRODUCT
T (0,1,2,3) | (1 =NORMAL) | (WEIGHT
FIGURE 2-2 X SL
[COST

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT

FORMALITY

SOFTWARE

UTILITY

RELIABILITY

CORRECTNESS

MAINTAINABILITY

VERIFIABILITY

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

e
SOFTWARE CATEGORY f
CANDIDATE METHODOLOGIES
KEY
SCORE

Worksheet-4
DO A) . P e
WA — — e aba AT U AT URPU e WP A S ST

METHBODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED

LIFECYCLE PHASE REQUIREMENTS __DESIGN

CONSIDERATIONS

SL
(0, 1,2 3)
FIGURE 2-2
———

WEIGHT
(1 = NORMAL)

COST

PRODUCT
(WEIGHT
X SL

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
UTILITY

RELIABILITY

CORRECTNESS

MAINTAINABILITY

VERIFLABILITY

SUM

P
SOFTWARE CATEGORY

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

CANDIDATE METHODOLOGIES

KEY

SCORE

Worksheet-5

........

Y.

'''''''''''''''''

PO S W)

‘,’, eyt
k_A,"'. ' {';n"z:

b e s s

I

IR o™ i o , o .*'.E"-'_ !I ql. AT AT g e e R e TR AT T SN e TS T . Cai el ':-.-".'-_-'_ DS el ;."".":".'._.'_—."__."_.'_—,""Z' Dl Tow -

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE REQUIREMENTS __ DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
0,1,2,3) | (1 =NORMAL) | (WEIGHT
FIGURE 2-2 X SL

COST =T

CRITICALITY
SCHEDULE
COMPLEXITY

DEVELOPMENT
FORMALITY
SOFTWARE
UTILITY
RELIABILITY
CORRECTNESS
MAINTAINABILITY
VERIFIABILITY

SUM

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

"SOFTWARE CATEGORY
CANDIDATE METHODOLOGIES

KEY
SCORE

. I PR R P L g P Lo O oL s R . PP
% et e T, T e T S ’ R : . et Lt

CIET | PSR A , . PR R . T A . . S o
. R R i o o t T s R LS | I yoaT e
. P P T St \ .) : RS ‘ . «
5 [R |1 P N L AP TS 2N .) B ML N
LA I R R R T ! L S S PN . 0o . PR LR) St e Ty . LT T ¥

g LSRN | AT soe 0 i, . o & 1 i oo e et o e

PR PRPLEL ISP b

Worksheet-6

~ . . « L
A N Sl S R T T T T P Yy I T

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE REQUIREMENTS __DESIGN

CONSIDERATIONS

SL

(0,1,2 3) | (1 =NORMAL) [(WEIGHT

WEIGHT PRODUCT

COST

FIGURE 2-2 X SL)

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
UTILITY

RELIABILITY

CORRECTNESS

MAINTAINABILITY

VERIFIABILITY

SUM

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

SOFTWARE CATEGORY I

CANDIDATE METHODOLOGIES

.........
..............
..................

KEY
SCORE
Al
Worksheet~7 -y
3
|
)
L N T

w
)
N
i METHODOLOGY SELECTION WORKSHEET
o SOFTWARE TO BE ACQUIRED
R LIFECYCLE PHASE —_REQUIREMENTS ___ DESIGN
CONSIDERATIONS SL WEIGHT PRODUCT
(0,1,2,3) | (1=NORMAL) | (WEIGHT
FIGURE 2.2 X SL
COST
CRITICALITY
SCHEDULE
COMPLEXITY
DEVELOPMENT
FORMALITY s
SOFTWARE RS
UTILITY =
RELIABILITY]
CORRECTNESS]
MAINTAINABILITY]
VERIFIABILITY 7
SUM
OSL = SUM OF PRODUCT / SUM OF WEIGHT =
SOFTWARE CATEGORY
CANDIDATE METHODOLOGIES
KEY
SCORE

Worksheet—8

.........

.- -'u)i\v“: '\(.\\\x\ t

b san B e e G m A b o Bt B * B e Wi Y St R ~ A S Sk i S AN PR MRS RN o, R e e .‘;—_-:_“.4'—‘_‘:_‘-7‘_'< WL LT TR N L Te LY e e T T e Ty -

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE —REQUIREMENTS _DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0,1,2 3) | (1 =NORMAL) | (WEIGHT

_| FIGURE 2-2 | _ X SL)

COST
CRITICALITY
SCHEDULE
COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
UTILITY
RELIABILITY
CORRECTNESS
MAINTAINABILITY
VERIFIABILITY

SUM S

OSL = SUM OF PRODUCT / SUM OF WEIGHT =

SOFTWARE CATEGORY [=

CANDIDATE METHODOLOGIES R

KEY =
SCORE]

ad?

Worksheet-9

. - . . - . F - N ’ e
,.'.,'4’ . e ST . S E LSS PRI RN S Tt et - . . AT T T I N} "
----- . et . oo . . T N . PSR AP, TN SR W O W . W WP, SPUPU GrP S WL IPRRTIY- WP W RV I WA U I T WS R W W R SO e

3.0 HOW TO SELECT AVAILABLE AUTOMATED TOOLS

3.1 INTRODUCTION

Automated tools can provide invaluable assistance during the requirements and design
phases of the life cycle. They can assure consistency of identifiers and terms, enforce
both documentation and project standards, and enhance tracking of project progress.
The tools can also free the project manager from tedious, repetitive tasks.

The choice of selecting automated tools is trivial if a tool set was developed hand-in-
hand with the methodology. That situation exists for the DSSD, HDM, SREM and
DCDS, FPAISLey, SARA, and USE methodologies.

‘f;:: The choice of selecting automated tools may require comparing several alternative tool
g sets developed for use with a particular methodology. That situation exists for SADT
and SA/SD (Yourdon Methodology). Section 3.3 explains how to compare alternative
tool sets.

The choice of selecting automated tools from available generic tools becomes necessary Y
when no specific tool set supports a methodology. Generic tools support various
software engineering tasks. Section 3.4 discusses the selection of generic tools.

3.2 THE SELECTION PROCESS

The process of selecting tools is guided by a set of questions that determine which of the
three situations described above is pertinent. Figure 3-1 is a schematic representation of
the process. The process is set forth in the following text.

Question 1: Does a tool set exist that is sntegral to the project’s intended methodology?

If the methodology is either DSSD, HDM, SREM or DCDS, PAISLey, SARA, or USE,
the answer is YES, and the tool set is described in section 4.0. Proceed to question 3.

If the tool set is not integral to the methodology, the answer is NO, proceed to question
9

31

- - - - - - - - - - - . £ - t Y - . N Y - - - - - .
DAL O L N S e e .- ot TN T L SR ST L TN T
------------ - . - - - W - . - - * N . . - - . . -

PO R e PR i e " m - a O e N . e = e e e P N .
LT TR R A R N . ST .- - et~ PN - R I L T I AL A Y
............

LR R) . . X . R . . . N RN P
PR WA (PR W W LUV, Ui, TP YL G Wl Vol Al WG S o U oY L‘hlw o Bttt b bt bl di b e ta le e

YES

Schematic of Selection Process

Integra! Toolset?

Too! set YES

Alternatives?

Compare
Alternatives

NO

Choose
Generic

YES

Tools

32

Figure 3-1 Tool Selection Process

o
p
e

IS RN
i

L
oo
N
“-
Co
<o
~

Question 2: Do tool set alternatives ezist that support the project’s intended methodol-
ogy?

If the methodology is either SADT or SA/SD (Yourdon Methodology), the answer is
YES. Use the comparison and selection process described in section 3.3, and then
proceed to question 3.
If no tool set alternatives exist, use the selection process for generic tools described in
section 3.4. (Note that project environment usability is tested by various criteria in the
selection process for generic tools.)
Question 8: Are the tools usable in the project environment?
Typical considerations involved in answering question 3 are:

— Is the specified CPU or hardware readily obtainable?

— Are the costs involved (time and money) reasonable for the project?

— If the specifications are to be developed by a team, do the tools allow and control
sharing of data among the team members?

If the answer to question 3 is YES, then the tool selection process is complete.

If the answer is NO, use the selection process for generic tools described in section 3.4.

3.3 COMPARISON AND SELECTION PROCESS FOR TOOL SET
ALTERNATIVES

The considerations involved in selecting one set of tools over another reflect the follow-
ing:

e Cost and schedule considerations:
— What is the cost of the software license for the tool set?
— What will training cost in terms of time and money?
— What will be the hardware costs associated with the tool set?

— Is the hardware needed readily available or obtainable?

e Software considerations:

— Does the complexity of the project and its development formality warrant
automated support?

e Quality considerations:

— Which is most important: reliability, correctness, maintainability, or
verifiability?

— How do the tool set alternatives compare in supporting that most important
consideration?

— How do the tool set alternatives compare in supporting the other quality
considerations?

The evaluations in section 4.0 are limited to four tool set alternatives: (1) TAGS, (2)
ARGUS, (3) EXCELERATOR, and (4) PROMOD, whose descriptions can be found in
sections 4.16, 4.17, 4.18, and 4.19 respectively. When a selected methodology is associ-
ated with one of these tool sets, the corresponding description should be analyzed in
terms of the most important considerations of the project. In the case where the project
manager wants to evaluate other tool sets (e.g., tool sets that have become available
since publication of this guidebook, or that have been enhanced with new capabilities,
etc.), he may find it useful to produce results in the standardized format found in sec-
tion 4.15. This will facilitate comparing his new evaluations against those in the guide-
book.

In addition to commercially available tool sets, some companies have developed tools for
their own use (e.g., STRADIS). Such tools are not usually available to other users, but
may be considered as a viable alternative tool set when that company is being evaluated
by the Air Force for a particular project.

The alternatives for the SADT methodology are TAGS and tool sets developed by large
companies for their own use (STRADIS is an example). The alternatives for SA/SD are
ARGUS, EXCELERATOR, PROMOD and Hughes has a tool set based on the Yourdon
methodology.

Thus, it is a good idea to review the current promotional literature on a particular tool
set as part of the selection process.

3.4 SELECTION PROCESS FOR GENERIC TOOLS

3-4

C

- . Sy e o .
- N o S . .oy - L. IS e .
PP N LS Sy S, U . PR ey P WP UCID L S SO r SPU ST SN U S S VO AR DERSIL SR St S S T

A v DMl L A T R
| L om0 aow a8 aea petangieus aeiale” s AR nd Aaiiint Bt At b Rl et s LA Calee - AR A RONSOS et

]

L

'

-

»

The purpose of selecting a set of generic tools is to create an automated environment
that is of direct benefit to the personnel developing the specifications. If the tools are
difficult to use or to coordinate, then their potential benefits are reduced. It is therefore
important that a project manager fully evaluate a potential set of tools. One approach
to evaluating tools (as mentioned in section 3.3), is to follow the format in section 4.15
of this guidebook to assure that relevant questions are asked about the tool set.

As with methodology selection, the significance of the project should fit the level of sup-
port the tools provide. Although some form of automated document preparation or con-
trol is always useful, less significant projects need less support than more significant pro-
jects.

Figure 3-2 lists generic tools that could be useful in an automated environment for
specification development.

i A well-known example of a generic tool that is versatile enough to have been used on
N many projects is PSL/PSA. It combines the function of a Data Flow Checker with
) some of the functions of a Project Database Management System. An evaluation of
t‘ PSL/PSA can be found in section 4.20.

An example of a generic tool is BYRON, recently released by Intermetrics. It is a PDL
& language system, intended for use with and in an Ada environment, but has not been
. available long enough to be considered ‘‘mature.” This newness is one of the factors
that must be evaluated when selecting a generic tool.

Figure 3-3 lists criteria for rating individual tools. These criteria provide a checklist of
considerations that should be reviewed when selecting generic tools. There are many
generic tools available, and a listing and evaluation of them is beyond the scope of this
guidebook.

35

- P
R . T Y

i
r R]
PRI A

oy
A

L SV N N)
sy

PP
PPV

e i ARl Slani dh
RS A A

GENERIC
TECHNIQUE DESCRIPTION ADVANTAGE DISADVANTAGE
Project Database A database and tools Providea positive visibil- Requires resources for

Management System

used to manage the
results (documents,
specifications) of a pro-

Ject.

ity of project status,
convenient query and
reports of specifications,

and access control.

establishing and main-
taining database. Com-
plicates developer and

system interface.

Data Flow Checker

Tests completeness and
consistency of defined
producers and consu-
mers of data, the flow
of data between pro-
ducers and consumers,
and the relationships

between data elements.

Assists specification
validation process and
long-term maintenance

of documentation.

Requires training in
preparation of input
and comprehension of

results.

Formal specification

language

The use of a formal,
computer-processable
notation for expressing

specifications.

Specifications can be
described by effect
rather than procedure.
Specifications can be
statically and dynami-
cally analyzed for com-
pleteaess and con-

sistency.

Extensive training In
formal logic and
mathematics and

experience necessary.

Interactive Graphics

Use of computers to
produce, maintain, and
change such two-
dimensional graphical
images as data flow
diagrams and structure

charts.

Easy to modify.

Requires relatively
larger amounts of com-
puter overhead to con-

tain graphics software.

PDL Language System

The use of a stylized or
formal notation to
express a detailed

desigo.

Design can be com-
pleted and venfied
before coding begins.
Assists partitioning of
design into units to be
coded by a single indivi-
dual. Enkaoces com-
maunication between
designer and program-

mer

Tempts designer into
coding an implementa-
tion rather than creat-

ing a design.

3-6

Figare 3-2 GENERIC SPECIFICATION TOOLS {part 1 of 2)

| agsur g CRERSIAS Rl d W St (il Saadh St ot Al it fe B A ™ Sttt AR A R T e A T LT T ETETT N N N R A R e e e
GENERIC
TECHNIQUE DESCRIPTION ADVANTAGE DISADVANTAGE
Simulation or prototyp- A model, used to Most eflective te~haique Relatively expeasive
ing predict performance, for stndying transient and time-consuming to
check or demoastrate bebavior. develop accurate
functionality, determine model(s).

impact of change, or
obtain information on

system capacity.

Static Analyser

Detection of errors
through examination of
specifications written in
a formal notation.
Errors that can be
detected are: ayntax,
misspellings, missing
statements, and
\mproper sequencing of

statements.

Cost of error detections

is low.

Effectiveness is limited
by the known proper-
ties that can be
checked.

Specification Tree

Automated generation
of a display of the
hierarchical relation-
ships within a related

set of documents.

Provides a layered road-

map of documents.

May ignore more impor-

tant relationships.

Traceability Apalyser

A systematic search to
ensure that the con-
tents of two results or
documents bave the

claimed relationships.

Assists in venfying

software development
products meet require-
ments (eg., verifying
design against require-

ments).

Tedious for developer
to establish relation-

ships.

Word Processing

The use of a computer
to store a document in
a digitized form so that
it may be edited, mani-

pulated, and stored.

Easily supports changes

to documents.

Requires investment in
bardware and training.
There is a lack of inter-

change standards.

Figure 3-2 GENERIC SPECIFICATION TOOLS (part 2 of 2)

[T

- 37

Mt et
e e

e G T TR TR TRV L TR NN RNy

Criterion

Definition

Technical Feasibility

An assessment of the technical problems of
integrating a tool into the existing environ-
ment. Considerations include unusual data
requirements or overly large processing or

storage demands.

Payofi/Contribution

Ap assessment of relative usefulness of a

tool.

Estimated Cost

An assessment of cost which includes

acquisition, integration, and usage costs.

Life-cycle data

An assessment of the specification life cycles

in which the tools are most useful.

Data Base Compatibility

Ap assessment of the difficuity in transfer-
ring data from this tool to other tools

already chosen.

Usable Output

An assessment of the value of the outputs

to a specifier or other tools.

Side Effects

An assessment of positive or negative side
effects produced. For instance, a tool may
generate secondary outpat that greatly
simplifies the tasks of other tools; or a tool
may impose inordinate timing, data,

storage, or format burden.

Costs/Schedule

An assessment of cost/schedule effects dur-
ing the life cycle as a resuit of incorporating

the tool into the environment.

Management Benefits

Ap assessment of the management benefits

resulting from use of the tool.

Required Training

An assessment of the cost and duration of
specialised training needed befcre using the

tool.

Figure 3-3 RATING CRITERIA FOR GENERIC TOOLS (part 1 of 2)

by LA

A g o i~ o

’ raln e T 3 Al
o
.'c'-‘
b
-
-::‘- Criterion Definition
: " Usage Constraints An assessment of the dependency of the
L, - tool on specific hardware and voftware.
et Required Computer Resources An assessment of the processing and storage
. .
- requirements of a tool.
* Level of Human Interaction An assessment of the level of human
interaction (volume of data entered, number
.: ! of keystokes, etc.) required for use of the
'\:-: tool.
1: User Interface An assessment of the user-friendliness of a
ww tool and the compatibility of its interface
with other tools in the eavironment.
’ R Support of Modern Practice Ap assessment of the extent to which a tool
§ supports modern specification practice.
; Support of Unique Project Needs | An assessment of the applicability or exten-
sibility of the tool to support unique project
. requirements not addressed by other tools.
A 1 Source Code Availability An assessment of the availability of a tool's
- source code for evaluation and/or
~: ; modification.
o Figure 3-3 RATING CRITERIA FOR GENERIC TOOLS (part 2 of 2)
)
A
s'-~:
.'-"?.
. -
3,18
X
Y

a's

4.0 Methodology and Automated Tool Descriptions i

4.1 Organization of this Section

This section contains descriptions of methodologies and tool sets in a standard format.
An outline of the format used for methodologies with a description of the contents of
each item follows as section 4.2. The methodology descriptions are contained in sections
4.3 through 4.14. They are arranged in the same order as they appear in the tables of
section 2.0.

A description of the format used to describe tool sets is contained in section 4.15. The o
individual descriptions are contained in sections 4.16 through 4.19. A description of :
PSL/PSA, a generic automated tool for requirements analysis, is found in section 4.20.
To make it easier to identify what methodology or tool set description you are reading,
you will find its acronym and key on the top of each page. The acronym is centered; .
the key is to the right. Notice that the key for a tool set consists of an upper case letter -
followed by an underscore followed by a lower case letter (eg., X_x). The upper case

letter identifies what methodology the tool set supports. The lower case letter

differentiates the tool sets themselves. So, the tool set key of D_b informs you that the
tool set supports methodology D and there is at least one alternative to consider.

4.2 Methodology Description Format
1. General Aspects

A. Identification

Gives the name and acronym of the methodology and identifies the
developing/supporting organization.

B. Overview
Contains a short description of the salient features of the methodology.
C. Identifies the specification life cycle phases supported:

Requirements Analysis, Architectural Design (intermodule communication,
data structures), or Detailed Design (module functionality).

Complementary methodologies will be listed for phases not supported.

41 o

Rl i Bl il il Mo i Shabdh S ad il Mt Sl el 2l Shand SRl ol il Bhaus e

R A - - Eali - - - - w s n Al ek sl ekl ot JAait e J bt P Sl el g it et o AV e v A g gty et At i of Cal\r i al vr""'"'l"‘.'j
‘s
.

l‘\ -'

e

.

o |

D. Software Categories

Lists standard software categories which are compatible with this methodol-

ogy.

Category

1 | Arithmetic-based

2 | Event Control

3 | Process Control

4 | Procedure Control

5 | Navigation

6 | Flight Dynamics

7 | Orbital Dynamics

8 | Message Processing

9 | Diagnostic S/W
10 | Sensor/signal Processing
11 | Simulation
12 | Database Management
13 | Data acquisition
14 | Decision/planning aids
15 | Data presentation
16 | Pattern/image processing
17 | Computer System Software
18 | S/W development tools

E. Sustable for systems of size:
— Small (<2,000 lines of code)
— Medium (2,000 - 10,000 lines of code)
— Large (>10,000 lines of code)
2. Technical Aspects
A. Primary approach
For a requirements methodology, the approaches are:

— flow-oriented,

4-2

E: 3 ‘ - ‘

L I P - .

e« %" e LN . w e
NP, AT AP R e
LRGN e ey s sy

— object-oriented, and

— state-oriented.

For a design methodology, the approaches are:

— data-structured,

— decomposition,
— encapsulation, and
-— programming calculus.

B. Supports

Traceability

Functional hierarchy/decomposition
Data hierarchy/data abstraction

. Interface definition

o Database definition

By Data flow

L Sequential control flow

b Concurrency/parallelism

Formal program verification
Iterative development

C. Workproducts

Are they relevant to MIL-STD documentation?

a. Tezxtual

Descriptions of reports, documents produced.

b. Graphical

Descriptions of diagrams produced.

D. Performance Specification

Does the methodology have the capability to specify or test timing and/or
accuracy constraints that apply to individual system functions?

o~ 1)
e
- -
1 S

\ E. Operating Qualities Specification e
7; Does the methodology have the capability to specify the following con- -
P straints?

:'f:': — Man/machine interaction
™ — Fault-tolerance Lo
on . =
L0 — Portability

< R
R} -
- — Reusability s

— Security g

; F. Ada compatsbslity

- Ada Feature Supported

;.‘ Packages X e

- Tasks

R Generics Lo
Exception Handling C B
n Types o
4 Representations T
ot X c'm'iicates supgort of feature. R
N C indicates conflict with feature. e
oy G. Quality Assurance

)

. How does the methodology check or enforce:

‘--". ‘\::
j — Consistency ? _‘I::j-
3
i —- Completeness ? a
— Validation ? - .
o H. Independent of L;:E'.f‘;
. s d
:.‘ Are the resulting specifications independent of: e
! L
?._-:‘: — Implementation Language ? j.'-.(:::‘
.‘.} '_‘\,‘::‘:"

o

"

”

&7 5.
A

.....................

'11‘4‘,'
R

< e
r.‘ - . .
- — Hardware Architecture ? RREN
._:: - ":".1
- Lol

— Operating System Architecture ? >

4.'. _"!
3. Support Aspects X a
A. Automated Tools , 3

Describes which automated tools are a-ailable.
B. Language

Identifies the language used in the following specification phases and its
degree of formality.

- — Requirements Specification

— Architectural Design

— Detailed Design

- 'f_: 4. Management Aspects

Does the methodology support project, technical, or configuration management?
How?

5. Usage Aspects
A. Equipment/Facilities Needed to use

Identify specific hardware and software (operating systems, graphics pack-
ages) required to use the methodology or associated automated tools.

B. Usability

Level Methodology -:i\-;-
Easy to Use
Moderately Easy to Use
Moderately Difficult to Use
Difficult to Use

C. Ertent of Use

Is the methodology mature? Has it been used outside the developing organi-
zation? How much?

Y ay U Ty W T

AN A L L I A it S S
e N AT NN PO

Transferability

A.

Availability
Is the methodology in the public domain, commercially available, etc.?
Trasining Avaslable

— Public documentation

— Proprietary documentation

— Consultants

— Seminars - scheduling and cost, if known

Trasning and Ezperience Requsred

Training/Experience Needed
months || USER || MANAGER [| ORGANIZATION
<1
1-3
3-6
> 6

The table entries reflect the amount of training and experience time
required to use the methodology effectively. A USER is an individual who
develops or assists in developing requirements and/or design specifications.
An ORGANIZATION is a group of users developing specifications as a team.
Primary Source of Documentation

List references.

4-6

..............
.........

......................... . gt
S e P g

. P L A T LR .
U IR I Fe N AR AN W, S S O T Y

e o, C e
. . ‘ot e A
. Lot 3 [i ?
o R PN
s e s atala T
[AN . N
PR AT 3 . i

L.
E;L

[

"&"r’ﬁ
¥ 2

- P R]
B Hate s !
! LI
“f . or :
. o Lo
vik. S o
N Y

'
P
PR

"1,
sl B

I As e e e i Aanlnah lingt ian e iaer Jhat el Lt iadiave diar v dhires S e+ it fai it SR tadhin

w DSSD key:A

4.3 DSSD Methodology Description
1. General Aspects
A. Identification

DSSD - Data Structured System Design

Ken Orr & Assoc, Inc
1725 Gage Blvd
Topeka, KS 66604-3379
(913) 233-0653

(800) 255-2459

»

¢

t; B. Overview

8

L DSSD is a data-structured development methodology. The basic idea is to

E_i? define outputs and their structure and then to work backwards to inputs.

'_.E:‘_'.. The basic technique is to construct hierarchically structured diagrams called
- assembly line diagrams that read left to right instead of top to bottom. The

diagrams can be structured to represent a hierarchy of processing steps,

events in time, data flow, or data structures. An example of an assembly
line diagram which illustrates what constitutes requirements definition as
recommended by DSSD is found below.

Logical Application Context
Requirements ¢ Application Functions
Application Results

Requirements
Definition
Constraints
Physical Alternatives
{Requirements Ranking s
Selection ':‘:' !
S
The methodology uses entity diagrams to model the software system and its Z-:::-
environment and to model functional flow. Detailed design for processes Y
(transformations) is done through a variant of Warnier-Orr diagrams in 4
which the process is always found at the leftmost bottom edge of the -‘Zj::
diagram. RN
.:l‘}
A
NN
47 o

.“." LT LT - I T T S S P T SO A AL
S NRCE I .\.-\u._‘.'\. '.‘_& .J_.{\\‘ -~ -_. AR

A
N
AR R T R, T, W R R TIRT 0 VEPEPC P RPE p s N

L\L. RPN WLy Sy \.

CHatt- minih el apth dangh 4 Efa e A i s A i M a1 s T T T W T WYTWUY T Ty

key:A | SRS
C. Life cycle phases supported: -
. .- - -j
All three phases (Requirements Analysis, Architectural Design, and Detailed el
Design) are addressed. L“~——1
D. Software Categories ':'_}
| category l:“j
1 Arithmetic-based s
9 | Diagnostic Software e
12 | Database Management g
14 | Data presentation S
17 | Computer System Software L
e~ =94
18 | Software Development tools -
E. Suitable for systems of ssze: ,-\'," i

Can be used for development of any size system.
2. Technical Aspects

A. Primary approach

Dataflow-oriented for requirements; data-structured for design.

B. Supports ek
Capability R

Traceability &ai

Functional hierarchy/decomposition]

Data hierarchy/data abstraction
Interface definition

Database definition

Data flow

Sequential control flow L
Concurrency/parallelism -doesn’t prohibit fj:.:;‘_'-'j
Formal program verification Tl
Iterative development

ol bl Ead bl bl el Ko

PP

DSSD key:A

Workproducts
Some of the workproducts (assembly line dataflow diagrams, entity
diagrams) can be used in preparation of MIL-STD software development
documentation.

a. Textual

Structured requirements definitions, database design, structured pro-
gram design

b. Graphical

functional flow diagrams
entity diagrams
assembly line diagrams for data flow
input/output diagrams
event structures

Performance Specification

Performance requirements for specific components is not addressed.

Operating Qualities Specification

Operating qualities such as man/machine interaction or portability are not
addressed.

Ada compatibility

Ada Feature Supported
Packages
Tasks
Generics
Exception Handling
Types
Representations

SRR

Qualsty Assurance

Structured walkthroughs provide manual validation of completeness and con-
sistency of requirements and design.

A S s dhal L te ooy)
- T

Sl Dt R 0l Ak &g 'S iy
A

‘‘‘‘‘‘

DSSD key:A O

X

H. Independence

The methodology is independent of planned implementation language,
hardware architecture, and operating system. However, the tools available
assume the implementation language will be COBOL. Tools and an orienta-
tion for Ada are under development.

3. Support Aspects

A. Automated Tools

The tool set available for DSSD is called STRUCTURE(S). It draws
diagrams on a lineprinter and provides a COBOL code generator.
STRUCTURE(S) is available for IBM, Honeywell, Univac, and Perkin-Elmer
CPUs.

B. Language

All languages used for requirements specification and design are graphical.
Each language is based on some form of the Warnier-Orr diagram.

4. Management Aspects

The tools provide a project management tool for version control. Technical (qual-
ity) management is provided by recommending structured walkthroughs.

6. Usage Aspects
A. Equipment/Facilities Needed for DSSD use:
Although diagrams can be produced manually, use of the tools in

rl:-f\..i_- STRUCTURE(S) requires an IBM, Honeywell, Univac, or Perkin-Elmer CPU
S and a lineprinter.

! B. Usabslity

Level Methodology |
O Easy to Use

o Moderately Easy to Use X

53 Moderately Difficult to Use

o Difficult to Use

v 410

AD-A162 457 EPECIFICRTION TECHNOLOGV GUIDEBDOK(UﬁGnglﬂﬁ AEROSPACE 273

0 SERTTLE WA D R ADDLEMAN ET AL
RADC-TR-85-135 F308682-84-C-08873
UNCLASSIFIED F/6 972

=
-

\

m

“w o i i - 8 - el SR T aw P At a . 3,
. . <P g i ol ad NS

e, T ; - M g gy L g e . ek

CH K LT A T R T e ~ ' 4

]
PP,
A A

=

3 .

5 “I“ |0 Bl i
—— 56 3.2

¥ =

3 T =

r
£r

5 I

I

\j e —_— E——.
- —— ——— ——

|)

S MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

g :

* > \\\\'\w

St N e e e e
" It P el S S -h-..
-

e T, BN - Selele e AT N
Sl "'.b..n;_t u}_.a_,! e ﬁj] -’4'

N - ,‘
2 N R AT IS N S SN

C. Eztent of Use

The methodology is mature. It has been used by many different organiza-
tions in developing information systems projects.

6. Transferability

A. Availability

The methodology and tools are commercially available from Ken Orr and
Associates.

Trasning Avaslable

Ken Orr and Associates provide proprietary documentation, consultants, and
privately arranged and regularly scheduled public seminars. The per-person
fees for seminars are in the range of $500 to $1000.

C. Training and Ezperience Required

Training /Experience Needed
months || USER || MANAGER |[ORGANIZATION
<1 X
1-3
3-6
> 6

D. Primary Source of Documentation

Ken Orr and Associates

o DSSD

o Also see:

> References

’ [Brackett1983].

< Michael H. Brackett, Developing Data Structured Information Systems, Ken
Orr & Associates, Inc, Topeka, Kansas, 1983.

P [Orr1977].

Ken Orr & Associates, Inc., Data Structured Systems Development Metho-
N dology, Ken Orr & Associates, Inc, Topeka, Kansas, 1977.

e [Orr1981].

' Ken Orr, Structured Requirements Definition, Ken Orr & Associates, Inc,
- Topeka, Kansas, 1981.

412

»
.&.L LA.A .;J'_;P_‘...h SATL

key:A

.
" "t
» Y
s, |

> \

P

S oy

i NS N R 1

et}
g
e et

Yo
]

R

¥

PrAl

-
2 n':r ‘
e D e A

nlinlad o' on's
LA] 'l LI
)

FIS

1

- Tavi
AR |
T ta

‘.-"

- o w
a%a
s Sl B
¢
. P

.f. .‘..

AL Sk Al
E

ERF RN
N

NN
n,' l'.— S

dooad
.
.

4.4 HDM Methodology Evaluation

1. General Aspects

A.

Identification

HDM - Hierarchical Development Methodology

Computer Science Laboratory
SRI International

Menlo Park, CA

(415) 859-4771

Overview

HDM combines the data structured and algorithmic refinement approaches
to design. A specification written in HDM is a hierarchy of abstract
machines. The methodology assumes that the requirements for the software
system have been captured in a model and can be written as a top-level
specification known as a TLS.

The TLS describes the system’s external (observable) behavior and it is writ-
ten a nonprocedural language called SPECIAL. Beginning with the TLS, a
hierarchy of abstract machines is produced by providing mappings from the
representations in the higher level machine to the representations in the
lower level machine. Each lower level machine provides more and more con-
crete detail. Eventually, the lowest level can be translated into an imple-
mentation language.

The system was primarily developed for the purpose of verifying security
properties of software. The automated tools support formal verification of
design. SRI is expecting to make an enhanced HDM available in March
1985, which will be Ada-compatible (concurrency properties planned),
through the DoD Security Center.

Life cycle phases supported:

The two design phases are supported. HDM assumes a requirements
specification has already been written.

4-13

* %

7 s

y

[

WA
. 0
s a

. HDM keyB o
¥ ’.:1 ﬂu
u D. Software Categories ‘ :
:':": &“: .

h(# | category 224
-._-: 6 | Flight Dynamics o
oy 7 | Orbital Dynamics ;’.:41
Sty 8 | Message Processing 2
10 | Sensor and Signal Processing '
oy 13 | Data Acquisition il
oo 15 | Decision and Planning Aids g
j‘;l 16 | Pattern and Image Processing
:‘:1.3-

R E. Sustable for systems of size:

- i‘_;'. The system could be used to develop systems of any size. However, the use
of HDM for a very large system might be unwieldy. In such a case, it would

AR be appropriate to use HDM in developing components for which it is neces-

e sary to verify security properties.

S 2. Technical Aspects

L

~ A. Primary approach

\.'. -

] Combines data-structured and decomposition approaches to design.
‘g'-lﬂ
e B. Supports

Capability
Traceability - (Each level ezplicitly
mapped to the lower level)
Functional hierarchy/decomposition

Data hierarchy/data abstraction

e
I ><.

Interface definition
-, Database definition
Data flow
:::'.::'-' Sequential control flow
j::;:;' X | Concurrency/parallelism (doesn't
ot prohibit, explicitly support in future)
""’ X Formal program verification
Oy X [terative development
s C. Workproducts
‘ Not directly relevant to MIL-STD documentation.
:.;.:: 4-14
NN

.....

Teztual

Produces a series of formal specifications written in SPECIAL which
are used for formal verification of the design or implementation.

b. Graphical
No graphical workproducts are produced.

D. Performance Specification
The specification and measurement of timing constraints are not addressed
but accuracy specification is. Indeed, the accuracy originally specified is
preserved down the hierarchy of machines.

E. Operating Qualities Specification
The security properties desired in the software system to be developed can
be derived from its TLS. Further, the presence or absence of those properties
is checked for in the design or implementation since either or both can be

verified relative to the TLS.

F. Ada compatibslity

Ada Feature Supported
Packages
Tasks
Generics
Exception Handling
Types
Representations

ol tel tal el te

G. Quality Assurance

Consistency and completeness checking are provided by tools which process
the language SPECIAL. In addition, specific properties can be validated
with the aid of a automated theorem prover.

H. Independence
Although the HDM methodology is not intrinsically language dependent,

there are tools specifically designed for verifying implementations in PAS-
CAL, MODULA, and Ada (planned for release in 1985).

Tl)-‘ ;‘. Op: el e
SRACOL A

x
>

P

2

. O N By e B € e
g

PN
s ERER S

/.

HDM keyB

The security model provided assumes a non-distributed system. If a model
of a distributed system was created, then HDM could be used to verify secu-
rity properties in a distributed environment.

3. Support Aspects

A.

Automated Tools

HDM includes a set of tools that check the specifications for syntax errors,
type errors, consistency, and some aspects of completeness.

Language

The language SPECIAL (SPECIfication and Assertion Language) is non-
procedural, with a formal syntax and semantics. SPECIAL supports modu-
larity, strong typing, user-defined types, exception conditions, assertions, and
invariants.

a. Requirements Specification - SPECIAL

b. Architectural Design - HSL (Hierarchy Specification Language) is used
to describe structuring of modules into abstract machines and of
machines into systems.

c. Detasled Design - SPECIAL

4. Management Aspects

HDM addresses technical management aspects of a software development by pro-
viding tools for formal validation of design specifications.

6. Usage Aspects

A

Equipment/Facilities Needed for HDM use:

Tools run under TOPS-20 or TENEX operating system and expect INTER-
LISP.

4-16

RS

e <L . . .
DR R R . -
Jeodadmamhs e L e

,‘},_ LB GUAL ¢ sl o ek e mat g ae g e Abol il A audpAd et i skl g Rt
S

B. Usability

Level Metkodolo.
Easy to Use

Moderately Easy to Use

Moderately Difficult to Use X
Difficult to Use

C. Eztent of Use

HDM is a mature technology. It has been used by various organizations
through the auspices of the DoD Security Center.

6. Transferability

A. Avaislability

HDM is available by arrangement with the DoD Security Center. It is
installed on CPU’s available through the ARPANET.

B. Training Avaislable

There is a2 manual on HDM and SPECIAL available from SRI for approxi-
mately $50.

The Mitre Corporation offers public and private seminars on HDM.

C. Training and Ezperience Requsred

Must be familiar with concepts in logic and formal mathematics.

Training/Experience Needed

months || USER || MANAGER {| ORGANIZATION
<1

1-3

3-6 X

> 6 X

D. Primary Source of Documentation

SRI International
Mitre Corporation in Bedford, Massachuetts

HDM keyB

The reference listed below is an excellent article comparing various formal
methodologies for specification and verification of secure operating systems.
Its bibliography can be used for locating in-depth articles on this topic.

Also see:

References

[HDM1981].
“Verifying Security,” ACM Computing Surveys, vol. 13, no. 3, pp. 279-340,

Cheheyl, M.H. et al, September 1981.

418

..........

...... Lot

Bcndboe) S seaund. D duadodbe) A s M ds A B s B S i A

e Wb OIMMCRRINA SR et b b Yt it A e AR S N S N e e O A T N A)

SADT keyC

4.5 SADT Methodology Evaluation
1. General Aspects
A. Identification

SADT - Structured Analysis and Design Technique

Douglas Ross

Softech, Inc.

460 Totten Pond Road
Waltham, MA 02254

B. Overview

SADT is a disciplined decomposition approach to modeling complex prob-
lems and systems. The language of SADT (SA) combines a blueprint-like
graphics language with the nouns and verbs which describe the problem
domain of the system to be modeled.

A SADT diagram, known as an actigram, is composed of no more than six
basic blocks. Each basic building block is drawn as a box with four sides
called INPUT, CONTROL, OUTPUT, and MECHANISM. Arrows coming
in and out of the basic box represent flows of data or control. The box
represents a transformation from a before state to an after state. Thus, an
actigram can represent a decomposition of data or activity.

C. Life cycle phases supported:

SADT supports the modeling aspect of requirements analysis very well.
However, as a technique for design it is limited to expressing a decomposi-
tion.

D. Software Categoeries

- # | category T
- 2 | Event Control o]
t 3 | Process Control ‘,.]
Ny 4 Procedure Control '_r_%
e 5 | Navigation - -'-'\1
11 | Simulation 3

| Sl S B S et Rl Aol BefCihdh S e N S M A SR Ui e 8 At M -0 AN S R AR L A Aa . e b Xl At A e A0 (L ANL PG e A et oy
. PN T AOA S EA f AR P

P -,

2

.

40
.

b

E. Sustable for systems of size:

SADT is a suitable methodology for requirements analysis of any size system
since it allows the analyst to deal with a limited scope at any one time and
the language insures a consistent decomposition.
2. Technical Aspects
A. Primary approach

The SADT approach is one strict decomposition by data or function.

Functional hierarchy/decomposition o N
Data hierarchy/data abstraction o
Interface definition

Database definition SRR
X | Data flow 2
X | Sequential control flow e
Concurrency/parallelism
Formal program verification

- Capability

X | Traceability - as a management procedure
X
X
X

X | Iterative development - by revision of diagrams

C. Workproducts

The diagrams SADT produces could be used as part of a MIL-STD require-
ments specification.

The workproducts are all diagrams, no text.
D. Performance Specification

Timing and accuracy constraints can be associated with a diagram, although
there is no way to verify that they are consistent with the diagram.

t_'-::

E. Operating Qualitses Specification - not addressed.
F. Ada compatsbility

SADT could be used for the requirements analysis phase of a software

- 4-20

o
- . ~.' .4" . . - -~ . - - Co- - ‘ N et L. : - . M - - - w e N - . -7 MR - T . . . - . V. AT
. v" ‘e .".~ -, . . . ‘_' - - - - - . - . R PR . - - D - . . - " - ~ - ot T . .) e 7.'
- - . - L T S B T - et = . et e m T -t .- A - . N et . R - YT . to- A
NERERE IR A R O - - R B R . . v . - s PP
B - - - - - . . - . . - . ~ - ot N ™ - \d " - - . - -
- - - - - - " - - . . - - - - - - - - - . e - = he . C e et - N T - B
----------- - e P . : . o R - - R . . - . . . - - -
P L s R -
. \

., - - e

....................... AR At AN |

T el
',‘. Tw
DAY
l. .-.‘-1

keyC e

development project whose implementation language would be Ada since ;:.'i-".-:-'
SADT itself is independent of implementation languages. However, SADT
does not directly support or map to specific Ada features.

G. Quality Assurance

Handled as a series of procedures for author/reader cycles, structured walk-
throughs. Correct use of the diagrams forces some consistency.

H. Independent of:

implementation language, hardware architecture, and operating system
architecture.

3. Support Aspects
A. Automated Tools
There is a tool (SCG) available from SofTech that will assist in preparation
of the diagrams. TAGS and STRADIS are alternative forms of this metho-
dology. Each has its own tool set which include automated analysis tools.

B. Language

The language is a rigorous graphical language with formal syntax and infor-
mal semantics.

a. Requirements Specification - graphical

b. Architectural Design - graphical
¢. Detailed Design - could use a PDL
4. Management Aspects
No procedures for project management are included. However, in support of

technical management, SADT has procedures for validation of the workproducts,
and recommends procedures for checking accuracy and traceability.

o

A
.

T A
-.‘l
o
IVC.
e
-t .
Y
=~

!
ol
!
|

AT

S

Y .) i .
eleielale

ST W

s
’

s

PR P
LIS IALICINY Py

1

4-21

SADT keyC
6. Usage Aspects ’
A. FEquipment/Facilities Needed for SADT use: w__.;
See specific tool set descriptions for TAGS and STRADIS. Also, a diagram RN
construction assistant program is available on a CDC Cybernet or Dec PDP- RS
11 under UNIX version 7. T
B. Usability F.=d
= S
- | Level Methodology |
Easy to Use
h Moderately Easy to Use
- Moderately Difficult to Use X
Difficult to Use
e C. Eztent of Use

It has been used in a variety of settings by many organizations.
6. Transferability
A. Availabilsty
In the public domain.

B. Training Available - from various training firms offering courses in Struc-
tured System Analysis and design.

C. Trasning and Ezperience Required

Training/Experience Needed

months {[USER |[MANAGER || ORGANIZATION
<1 X

1-3 X

3-6 X

> 6

L. A ey et S b e o) R .
. S e . . . A
Lo T R R L 15 .

et 4 adl it e Y * S i e el Y
e it It el liad int Ball it et Rt Batolan.) *

SADT keyC

D. Primary Source of Documentation:

Softech

References

[SADT1977a).
Douglas T. Ross and Kenneth E. Schoman, Jr., “‘Structured Analysis for
Requirements Definition,” IEEE Transactions on Software Engineering, vol.
SE-3, no. 1, pp. 6-15, January 1977.

[SADT1977b).
Douglas T. Ross, “Structured Analysis (SA): A Language for Communicating
Ideas,”” IEEE Transactions on Software Engineering, vol. SE-3, no. 1, pp.
16-34, January 1977.

4-23

..................

.......

SA/SD keyD ..

4.6 Yourdon Real-time Methodology Evaluation

1. General Aspects
A. Identification

SA/SD - Real-time Structured Analysis/Structured Design by Yourdon, Inc.

Yourdon, Inec.

1133 Avenue of the Americas
New York, New York 10038
(212) 391-2828

B. Overview

SA/SD actually refers to two distinct methodologies: real-time and classic.
This description covers the real-time version. The classic version is very
similar, but it does not address real-time issues such as
concurrency /synchronization or mapping to a distributed hardware architec-
ture.

The methodology blends the three major requirements analysis techniques of
state, flow, and object modeling with the design techniques of decomposition.
Not only does SA/SD provide description of the techniques to use for
requirements and design specification, but it also gives rules of thumb for
applying the techniques in a reasonable and consistent manner both within
and across life cycle phases.

The specific steps in software development as recommended by SA/SD are to
construct a model:

i. of the context or environment of the system,
ii. of the internal behavior of the system,
ni. that shows the processor utilization of the system,

iv. that shows the software architecture utilization, and

P v. that shows the coding architecture utilization.

P

;E;l Each model has both a physical and logical organization. The first two steps
:;Z are requirements specification and analysis activities; the remaining three are

design activities. Each model is differentiated by the type of behavior which

il i

h

AR RRY
2 RK P, A

4-24

------------ a0
T N SO . O T ST e DYSAANILRLN AT
B SO B I e A R N U ‘.'.':u"x'.\.‘\\‘ \"'\'\l‘.‘*:‘.' SN

L | Ry -.-'a’- T . - . . P T N - Y N C "“\.A *
iy el i aachuloniitbindobnafioitht b e el bt e e PRI TR LI I, WO, VO, ST \.“.L‘-.‘:.L‘..L‘:L“A_~h‘_’-liflg.

- . "
I
adan

Sl |

l.- .
e
LI
ala ladiadar

SA/SD key:D

it describes and its constraining effect on the final implementation. As one
proceeds through the steps, the final implementation becomes more con-
strained.

C. Life cycle phases supported:

All three (requirements, architectural and detailed design) phases are sup-
ported.

D. Software Categories

REALTIME
| category
4 Procedure Control
5 Navigation
8 Message Processing

11 | Simulation
15 | Decision/planning aids
16 | Pattern/image processing

CLASSIC

category

Event Control

Process Control

Message Processing

Decision and Planning Aids
16 | Pattern and Image Processing

100 |0
o Rk

E. Suitable for systems of size: Any size.
2. Technical Aspects
A, Primary approach
Requirements specification is primarily done with a flow-oriented approach,

but state transition diagrams also done. The design approach is decomposi-
tion.

INAS
v 7 l").""

.-
3
A
N
.'.

4-25

RPN

Lo

X B G e
w
RN

. - O A "_.''_. v ","..". A
’ '&Lﬁiux‘_;_:..:;_k.&_h-‘._‘;

- d A R T T T R T T T R T T Te T

SA/SD keyD

B. Supports

Capability

Traceability

Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition

Database definition

Data flow

Sequential control flow
Concurrency/parallelism

Formal program verification

Iterative development (data dictionary)

o bl bal el ta bad el (o

"

C. Workproducts
They are indirectly relevant to MIL-STD documentation.
a. Teztual
Structured specifications, data dictionary, mini-specs, state transition
model, design specification for each code module, database design,
operational constraints, physical constraints.
b. Graphical
Data flow, structure charts for code organization, data structures, finite
state diagrams, decision tables, and control low diagrams where state
not independent.
D. Performance Specificalion
A timing constraint can be associated with a diagram.

E. Operating Qualities Specification

Man/machine interaction is partially addressed through data flow and state
transition diagrams and prototype screens.

.

)
& A

[. x ;'. .
T .
. PRI

e
i

I
s Te
LI,

4-26

e
. B

B ¢
% SA/SD

ro F. Ada compatibslity
1) S
X Ada Feature Supported
o Packages X
- Tasks X
\) Generics

Exception Handling X

Types

o -

) Representations

Incompatibility with database modeling/design and with I/O.

G. Quality Assurance

- e
"L SA/SD provides a set of rules and procedures to follow to check for coher- R
ence, correctness, clarity, and comprehensibility of specifications. o
-~ o
SA/SD recommends guidelines for manual validation via author/user "':?
by reviews, S
> H. Independent of:
. implementation language, hardware architecture, and operating system
architecture. However, code organization, processor and software environ-
ment diagrams are drawn with a particular implementation environment in
mind.
;
) 3. Support Aspects
j‘_'{; A. Automated Tools
Three tool sets provide automated support for the SA/SD methodology:
ARGUS, EXCELERATOR, and PROMOD. See their individual evaluations
for more details.
B. Language
7'; Uses both graphical and textual languages for all specification phases. The
textual language is an informal structured English (a PDL in the case of
L detailed design); the graphical languages have formal syntax (symbols are
:.' provided) with informal semantics.
.
o 4-27

....................
.. . L R AR .
-~ [W e T AR . RETN o e T
IR S I I L A R S ~ AR AR

q‘\.; PR A (ARG O PV LE SRR G-V S N T SRS W\

" \.‘.~ - -".‘.‘..'."- - °
Qoo St

Sow
a2

SA/SD keyD =

' 4. Management Aspects

N SA/SD supports technical management through procedures for validation of
workproducts and by providing guidelines for application of its techniques.

5. Usage Aspects

A. Equipment/Facilities Needed for SA/SD use:

5 See the specific tool set descriptions for ARGUS, EXCELERATOR, and
= PROMOD.

L B. Usability

3 " ’ Level H Methodology

r_}: Easy to Use

¢ Moderately Easy to Use X

Moderately Difficult to Use
Difficult to Use

C. Ezxtent of Use

SA/SD is a mature technology which has been employed by many organiza-
tions for development of a wide variety of software projects.

St Bacs et s i et Aridh Srun aaib i el SR I L NE BRI U e il i I a2 sl et At i AR I AR A0 S

i i S S Bl Sl v I s B TR AN T U T

,"
A

". ' "
ML
s

SA/SD key:D NSNS

PP

~

6. Transferability

A. Availability: Commercially available.

B. Training Available

Yourdon, Inc offers public and private seminars and provides consultants.
The public seminars cost approximately $900 per person and are scheduled
nationally. Private seminars, which are structured as a five day course, can
be arranged for up to 24 participants at a cost of roughly $8600.

an 3
s
(4

C. Training and Ezperience Requsred

Training/Experience Needed

months || USER |{ MANAGER || ORGANIZATION

<1

1-3 X X X

3-6

> 6]

B
RPN U

D. Primary Source of Documentation

Yourdon, Inc
_;1.
p‘:\
n:' N
b -
b -,
A .
-
g L
- T
» L-;;ij
ke
»! h) ":‘

i PRt
0, 4-29 U

RN

3

X SCR keyE
i

oN 4.7 SCR Methodology Evaluation
'.": 1. General Aspects

A

’ A. Identification
.

- ::. SCR - Software Cost Reduction Project

_ Naval Research Lab

5?:;_) Washington, DC 20375

: \ B. Overview

(<

The SCR requirements and design specification methodology is purely tex-

L1 tual. It is based on the principles of information hiding and separation of
[concerns. Separation of concerns requires that information be divided into
'j:‘_' clearly distinct and relatively independent documents. Information hiding
guides the architectural design of the software and leads to software that is

easy to change.

= The basic approach is data abstraction. Data items and the functions
L needed to create, store, retrieve, or manipulate them are identified. Event
' lists are used to document how the abstractions change relative to changing
conditions as the software executes. This conditions can be nothing more
complicated than passage of time,

" The methodology includes procedural guidelines and suggested documenta-

[tion formats that help keep the specifications complete and consistent.
C. Life cycle phases supported:
"‘:: All specification phases supported.

- 430

D. Software Categories

| # | category
2 Event Control
3 Process Control
4 Procedure Control
5 Navigation
6 Flight Dynamics
7 Orbital Dynamics
8 | Message Processing
10 | Sensor/signal Processing
11 | Simulation
13 | Data acquisition
15 | Decision/planning aids
16 | Pattern/image processing

E. Suitable for systems of size:

Any, but large systems would benefit from automated documentation control
tools.

2. Technical Aspects
A. Primary approach

State-oriented for requirements since events and conditions are specified.
Design approach is encapsulation by data abstraction.

B. Supports

4-31

: L e B R B L R TR
* 7. R T Tt S, s o - ' R I ot LA PR

- : .
EN K . 1. Y F‘ N . . - o - - . . ~ e - - . - B - N . - . - " " -~
RO L T IR IS - PR S e BT S R P S .o N
P LIV W T TR A A A . T, N K T T T LA, TR L R I UL ‘.L_L..;._;L-.;‘_i

vt Sabanas

B Capability

Traceability

Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition

Database definition

Data flow

Sequential control flow

X | Concurrency/parallelism

Formal program verification

X | Iterative development

ol talte

C. Workproducts

Satisfies the intent though not always the form of MIL-STD documentation.
a. Teztual
Requirements document, module decomposition document, hierarchy
subset (uses relationships between modules), process structure docu-
ment, resource allocation document, and module interfaces.

b. Graphical

Has suggested formats for data item descriptions, and templates for
value descriptions.

Although the method is primarily textual, specification of timing constraints
is expected. Accuracy is addressed in the formats for data item and value

D. Performance Specification
descriptions.
E. Operating Qualities Specificalion
Possible, since specifications are pure text.
o

e Bt ab - e i e e it it T A i i s AR AR A U TR o S

b
L
¥
'x
']

SCR keyE

F. Ada compatibility

N

LY
h
{

.
R
l:
I
L.
Le
’ -
L.

Ada Feature Suggorted
Packages X
Tasks X
Generics X
Exception Handling X
Types X
Representations X

G. Quality Assurance
The methodology suggests the use of a data dictionary for data item descrip-
tions and the use of text macro expansion to keep definitions of functions
and data items consistent across documents. Condition and event tables can
be manually analyzed to check for consistency and completeness. Validation
can be accomplished by manual review of the documents.

H. Independent of:
Hardware architecture, operating system architecture, and implementation
language. An implementation language which enforces data abstraction is
preferable (Ada does to some extent).

3. Support Aspects

A. Automated Tools
None specific to SCR, but document preparation and control tools are useful.

B. Language
Rigorous English is used for all specification phases.

C. Management Aspects
Addresses project management issues via manual procedures for document
control. Technical (quality) management is addressed as analysis of event

and condition tables.

4. Usage Aspects

4-33

MR L L . A D I A e A R S Al AN S M IV " "N A T Y il
S SN e T At e e B AR I I A AR i e e S et St ettt et S Jiatt A Bt Al e JAnft iar e it 4

SCR keyE

“a

4
x

% R

i o8

*,. e
“ .“ Ty

- ey, e, .

PR gl PRPRIPEPIS
PRI o

“ 'I‘ s - ’

. “.' b | e 1

: Sl

: I AR

‘0. 4. 'x tu-d

A. Equipment/Facilities Needed for SCR use:
Text editor on any CPU.

B. Usabilsty

Level Methodolog
Easy to Use X

Moderately Easy to Use
Moderately Difficult to Use
Difficult to Use

C. Ezxtent of Use

The methodology has been used outside the Naval Research Lab by several
organizations (see reference by Hester below) on several projects.

6. Transferability
A. Availability

In public domain in the form of technical reports from the Naval Research
Lab.

B. Trasning Available
All documentation is in the public domain.

C. Training and Ezperience Required

Training/Experience Needed

months || USER || MANAGER || ORGANIZATION
<1 X X X

1-3

3-6

> 6

D. Primary Source of Documentation

Naval Research Lab
Washington, DC 20375

4-34 RSN

.........................

W St
R CO I B [N .
didboa s AN T mle" atuTlatatata o

[N -

SCR

Also see:

References
[Britton1981].

Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas, “A Pro-
cedure for Designing Abstract Interfaces for Device Interface Modules,”

Proceedings of 5th International Conference on Software Engineering, pp.
195-204, March 1981.

[Chmural982].

Louis J. Cbmura and David M. Weiss, “The A-TE Software Requirements

Document: Three Years of Change Data,” Proceedings from AGARD
Conference CP-350, September 1982.

[Heninger80).

Kathryn L. Heninger, “Specifying Software Requirements for Complex Sys-

tems: New Techniques and Their Application,” IEEE Transactions on
Software Engineering, vol. SE-8, no. 1, pp. 2-13, January 1980.
[Hester1981).

S.D. Hester, D.L. Parnas, and D.F. Utter, “Using Documentation as a

Software Design Medium,” The Bell System Technical Journal, pp. 1941-
1977, October 1981.

(Parnas1972]|.

David L. Parnas, “‘On the Criteria to be Used in Decomposing Systems into
Modules,"” Communications of the ACM, pp. 1053-1058, December 1972.

4-35

keyE

o e~ T ——————— Podiie it Shuie ats “aukie Svi LCAReE ey , s T P— r— R MM A Sl Bt s g |

SREM keyF

4.8 SREM Methodology Evaluation

1. General Aspects
A. Identification

SREM - Software Requirements Engineering Methodology

J. Mack Alford

TRW, Huntsville Laboratory
213 Wynn Drive

Huntsville, AL 35808

(205) 837-2400

B. Overview

SREM 1s based on a graph model of software requirements. The basic con-
cept is that design-free functional software requirements should specify the
required processing in terms of all possible responses (and the conditions for
each response) to each input message across each interface. A message may
contain input data or represent stimuli generated from an external event.

That is, the methodology is based on a stimulus/response approach as R
opposed to a purely hierarchical decomposition approach. The required el
actions of the software are expressible in terms of R_NETS (requirements
networks) of processing steps. Each processing step is defined in terms of
input data, outpnt data, and the associated data transformation. The input

interfaces (the system stimuli) are defined and the R_NETS trace the inputs ;
through the various functional transformations to their associated system L

outputs (responses). o
(' Life cycle phases supported: Lr%

SRENM directly supports the requirements analysis phase; the other two
phases are supported by DCDS. DODS s the extension of SREM to design
of distrtbuted svstems,

o
K.
h
v
[(]
r

]

).
N
.

~ s
v %o
e

1-36

‘.'.Ta_‘_'-‘-'.'
L. R
s P e
S

P S

r’-‘-
LI
.
Y
3

Coam A e gt 08 Salk el dc i A’ A e ot T i Sl A e AMA AARAML AN IR IR AR IC AL AN APER P S

[ad doa 20 A0 At Ava Ava 4 nCaveriincd d Sia~atatiie o A talySal in Sl S R

SREM key.F

D. Software Categorses

category

Flight Dynamics
Orbital Dynamics

0 | Sensor/signal Processing
11 | Simulation

13 | Data acquisition

== Hk

E. Suitable for systems of size:
Medium to large size.
2. Technical Aspects
A. Primary approach

State-oriented [alternatively referred to as finite state machine or stimulus-
response descriptions].

B. Supports

Capability
Traceability
Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition
Database definition
Data flow
Sequential control flow
Concurrency/parallelism
Formal program verification
[terative development

1 P tal tel tad bl Ead Ead Kl e

. Workproducts
They are indirectly relevant to MIL-STD documentation. The requirements

and quality assurance sections of a specification are addressed by the RSL
listing and the completeness and consistency tests REVS provides.

1-37

L.
..

et e -

e

.."-1.“4".'-" R s -0 [L . . -
[P W W "N By Y I S P B S SN W N D e PSP e e PN W W

D.
E
F.
,
"

SREM keyF

a. Teztual
Documentation from queries to requirements database maintained by
tool set REVS. Requirements are maintained as RSL statement list-
ings.

b. Graphical

R-NET diagrams produced by tool set REVS, requires a Versetek
priater.

Performance Specification
Both accuracy and timing constraints can be formally specified.
Operating Qualities Specification

Can be specified as UNSTRUCTURED_REQUIREMENTS. In some cases,
RSL has been extended to cover specifying some of these qualities.

Ada compatsbslity

Ada Feature Supported

Packages

Tasks

Generics

Exception Handling
Types
Representations

ettt talle

Quality Assurance

Static analyses for consistency and completeness can be performed with the
tool set REVS. Validation can be performed as a manual procedure of peer
review, or as a dynamic simulation through REVS.

Independent of

implementation language, hardware architecture, and operating system
architecture.

3. Support Aspects

4-38

P

b XA,

4.

SREM keyF

Automated Tools

The set of automated tools is known as REVS. The tools aid in preparation
of documentation of requirements, perform static consistency and complete-
ness analyses of data flow and the database maintained by REVS, and per-
form dvnamic analyses.

Language

Requirements Specification is done with RSL. RSL (Requirements
Specification Language) has formal syntax with informal semantics. RSL is
also extensible to allow the user to extend the language to meet the require-
ments of specific projects.

Architectural and detailed design can be done with the languages DCDS pro-
vides.

Management Aspects

SREM supports project management since it is possible to derive schedule infor-
mation and management control information from the centralized data base
(ASSM for Abstract System Semantic Model) REVS provides.

Technical management is supported through quality assurance tools REVS pro-
vides.

Usage Aspects

A.

Pl SALP, Sl i e A AL " st i RSV

FEquipment/Facilities Needed for REVS use:

CDC 7600 or Cyber 74/174/175 or VAX 11/780/VMS
graphics consoles
Pascal/Fortran compilers

plotters
Usability
Level Methodolog
Easy to Use
Moderately Easy to Use
Moderately Difficult to Use X
Difficult to Use
4-39
:’.; - .i:}"_ i \ e R .:"‘:
« e DAL .

I N e et e N e S T
A A et Al s a s aa sl et bt o B dadon e N


~~~~~~~~~~~~~~~~

......................

SREM keyF P

C. FExtent of Use S

SREM is mature, having been used on many projects by many organizations.

8. Transferability Sk
A.  Availabilst .E;E:
! J
In public domain. o
B.  Training Available ‘f
A description of the methodology (VOL 1) and a user’s guide (VOL 2) are
available as public documentation.
TRW will supply consultants on SREM (for a fee, of course). They also offer
seminars on SREM.
C. Training and Ezrperience Required
Training/Experience Needed
months || USER || MANAGER || ORGANIZATION
<1 X X
1-3 X
3-6
> 6
D.  Primary Source of Documentation

Ballistic Missile Defense Advanced Technical Center
Huntsville, AL

SREM User's Group




SREM keyF

[Bell1978).

Thomas E. Bell and David C. Bixler, A Flow-oriented Requirements State-
ment Language, TRW, April 1976.

[Rzepkal982).

William E. Rzepka, Using SREM to Specify Command and Control Software

Requsrements, RADC-TR-82-319, Rome Air Development Center, Griffiss
AirForceBase, NY, 1982,

[Rzepkal983].

William E. Rzepka, “RADC SREM Evaluation Program - A Status

Report,” ACM Sigsoft Software Engineering Notes, vol. 8, no. 1, pp. 20-22,
January 1983.

[Stone1983].

A. Stone, D. Hartschuh, and B. Castor, SREM FEvalualion, Rome Air
Development Center, February 1984.

s
-41 RS
4-4 N




Saam” Y, s

s sy

4.9 VDM Methodology Evaluation

1. General Aspects
A. Identification

VDM - Vienna Development Method

Developed at the IBM Vienna Labs by Cliff Jones et al.
Vienna, Austria

Supported by Dines Bjorner
Department of Computer Science
Bldgs 343-344

Technical University of Denmark
DK--800Lyngby, Denmark

B.  Overview

Define representation abstractions (syntactic domains); then create a series of
refinements with justification from one refinement to the next. Based on set
theory. The parts of a VDM specification are:

e state and type definitions - define the data objects that are to be
employed within the specification and their logical types (one of sets,
lists, mappings, and records);

e invariants - predicates on the state which assert that specific relation-
ships hold between the values of the data objects in that state; and,

e operations and associated functions - mathematical formalisms that
define key activities on the data objects, functions can not change the

state of an object, operations can.

(', Life cycle phases supported: All.

4-42




— "l O R R NIRRT TS R R Y
‘\‘. .
) “t:‘:
3
Y-
SN VDM key G
"
i
‘RN D. Software Categories
"
- # | category
:-;l; 1 Arithmetic Based
b 8 | Message Processing
! 9 | Diagnostic S/W
‘ 12 | Database Management
S 14 | Data presentation
A% 15 | Decision and Planning Aids
13}: 16 | Pattern and image processing
. 17 | Computer System Software
v 18 | Software Development Tools =
E.  Suistable for systems of size: f:_'-
Medium and Large, but experience in the methodology could best be gained
by developing small systems first. —
" 2. Technical Aspects '-',-‘::"
) ,'_::H
A. Primary approach _‘__]
o
o State-oriented for requirements; encapsulation for design. '—T
B.  Supports )
o Capability 1
J X [ Traceability (mapping of GMB to SL1)
i X | Functional hierarchy/decomposition
e X | Data hierarchy/data abstraction -
’:A,* g X | Interface definition -
o X_| Database definition
e Data flow
e Sequential control flow
f::tl * | Concurrency/parallelism - doesn’t prohibit
Bt X | Formal program verification
o X | Iterative development
‘; (. Workproducls
::{::: Does not produce MIL-STD documentation.
b
T
S
\:"
b4 1-43
<7




VDM key G

a. Textual

Produces a series of more detailed formal specifications written in
META-IV.

b. Graphical None.
D. Performance Specification
Can specify accuracy constraints through representations for types.
E. Operating Qualities Specification Not addressed.

F. Ada compalibslsty

Ada Feature Supported |
Packages
Tasks
Generics
Exception Handling
Types
Representations

o [01 Ead b bet

(.  Quality Assurance
Verification is a manual procedure.
H. Independent of

implementation language, hardware architecture, and operating system
architecture.

3. Support Aspects
A.  Automated Tools
VDM has no set of automated tools.

Language

T
o]

.
-

The language for all three specification phases is designated META-IV. It is
based on set theory and is nonprocedural, with a formal syntax and seman-
tics.

r oL
I .

4-44

" l 20 sl an gl G 2 g8 -
T
o
4 s
» "

LIPS SR DR TP TP -SRI % USRI GCR S ST IO S T IR B




VDM keyG

4. Management Aspects

VDM support technical management through its techniques for validation of the
design.

6. Usage Aspects
A. Equipment/Facilities Needed for VDM use:
VDM has no automated tools, thus none needed.
B.  Usability

A developer needs some knowledge of logic and the formalisms of finite
mathematics.

Level ” Methodolog

Easy to Use

Moderately Easy to Use
Moderately Difficult to Use X
Difficult to Use

C. Ecxtent of Use

VDM is mature, and has been applied to large projects by various organiza-
tions. DDC (Dansk Datamatik Center) used VDM to develop a validated
Ada compiler.

6. Transferability
Ao Avarlability
In public domain.
B.  Training Available
Through seminars and consultants:

Dines Bjorner and Dansk Datamatik Center
Cliff Jones of Manchester University

As of December 1984, Dines Bjorner charges $2000/wk plus expenses for a
seminar on VDM.

4-45

........
...........

. .

. RN S PR T - - - . I . et el ST e
- - « . IR A P R U R TR A O PR T
PN, "W T S M, T e W, " Y G P ) PR PP FUTRAUPN W P PP R L . ) . ) N 2




R N R R g v.‘-ﬂ-vr.rv Pt e st ol Sa ot B Gt e/ e Sed Bl Bad Saf o - B T v .

.............

-2

VDM keyG

C. Training and Ezperience Requsred

Trasining/ Experience Needed

months || USER || MANAGER || ORGANIZATION
<1

1-3

3-6 X

> 6 X

D. Primary Source of Documentation

Also see:

References

[Bjorner1978|.
The Vienna Development Method: The Meta-Language, Lecture Notes in
Computer Science, Springer-Verlag, 1978.

[Bjorner1981].
Dines Bjorner, The VDM Principles of Software Specification & Program
Design, Lecture Notes in Computer Science, Formalization of Programming
Concepts, pp. 45-74.

[Clemmensen1984).
Geert B. Clemmensen and Ole N. Oest, Formal Specification and Develop-
menl of an Ada C'ompiler - A VDM Case Study, IEEE, 1984.

[J()n(‘SIQXO].
CLff B. Jones, Software Development: A Rigorous Approach, Prentice/Hall
International, 1980,

[Shaw1981].
R.C:. Shaw, P.N. Hudson, and N.W. Davis, “Introduction of a Formal Tech-
nique into a Software Development Environment,” ACM Software
I'ngineering Notes, vol. 9, no. 2, pp. 54-79, April 1984.

- 46
JE T STl PP S o e el S -
. LN i N e R . L . S e .
L W T el A A I T . -7 e t et l.' - . . . . PR . .. -« 0 .
. A:, ',‘-'_,--,\-.,‘- R el e -
..... .. St e L R e C e e
-l e " o I PN RIS B NP DR INCAPIRAP St 4 Anta tata®aSe e ala latta ol oL L T S




- . v - grgrv oY e rURTRETTET RT YN hat el i o S N ooV SR
F_,_‘ et Aaaan 0 e 8 2UmL s ai S Ve leat SN ENEL b as o 2 i e S A I e Bt A Rt Jhat. . -

e
P

DCDS keyH

b
l-',j.

4.10 DCDS Methodology Evaluation

1. General Aspects
A. Identification

b DCDS - Software Requirements Engineering Methodology

{ J. Mack Alford

- TRW, Huntsville Laboratory
) 213 Wynn Drive

Huntsville, AL 35808

(205) 837-2400

B.  Overview

DCDS is the extension of SREM to the design of distributed data processing
systems with traceability to requirements. DCDS can be considered a two-
part methodology:

e Programming-in-the-large - a data processor architecture is selected
and the required processing is mapped onto it. This part, called Distri-
buted Design, consists of allocating processing to a processor, allocating
data to a processor, defining scheduling, and task design.

e Programming-in-the-small - algorithms are selected or constructed.
This part is known as module design.

C.  Life cycle phases supported:

SREM supports requirements analysis; DCDS supports architectural and
detailed design.

D. Software Categories

category

Flight Dynamics
Orbital Dynamics

10 | Sensor/signal Processing

S Rk

11 | Simulation
13 | Data acquisition

4-47 ERON
: h]

_7—. Al 1Y ..-.!‘. ..’.‘ -' - ._--. - .". A‘, ".' . . ~'_
e e T e e e e

* . ® - o - e '--.-.w P R R N T T T S PR R, St S )
N R W e e o vad,




IR AR A AL " nitd aAC anl At el AT AR et AR M UM A A A Pl

DCDS keyH

E.  Suitable for systems of size: medium and large.
2.  Technical Aspects
A.  Primary approach

The design approach is basically encapsulation.

B.  Supports . ".j-:'.':
H Capability T
X | Traceability Lol
Functional hierarchy /decomposition !—:‘:‘%
X | Data hierarchy/data abstraction S
X | Interface definition ]
X | Database definition R
X | Data flow
Sequential control flow
X | Concurrency/parallelism - snclud-

ing synchronizalion
Formal program verification
X | Iterative development

. Workproduets

The specifications are maintained in the various languages used in DCDS. In
that form, they would not be usable as MIL-STD documentation. However,
it is possible that the tools generate usable documentation such as structure
charts or tests plans from these statements.

D. Performance Specification

The constraints specified with SREM are taken into consideration. Also, the e
dynamic analysis tools can test whether the design meets those constraints. ol

I;. Operating Qualities Specification

Fault-tolerant behavior is addressed in the detailed design phase. i ;

1-48




.....

3.

T Y

H.

At Bt Stk slest Jhath-SadhDEnSiCE Bai it el *Raf S M A RN A e At R e AR Ch N IR AL N A L R R B S AR

DCDS key:H

Ada compatibility

Ada Feature Supported

Packages

Tasks

Generics

Exception Handling
Types
Representations

I tatEet taltal e

Quality Assurance

The automated tools check for consistency and completeness. In fact, one
checks for completeness of the processor allocation. Validation is done
dynamically and can include testing whether the design satisfies perfor-
mance constraints.

Independent of

implementation language, hardware architecture, and operating system
architecture.

Support Aspects

A

B.

T el atal AT AP DAL I W S S S PO S BRI DI I S S AT O .G D S I g - N

Automated Tools

The tool set REVS from SREM has been extended for use with MDL
(Module Design Language).

Language

Architectural design is done with a language DDL (Distributed Design
Language) whose syntax is similar to RSL (SREM's language). Detailed
design is done with a language MDL (Module Design Language) whose syn-
tax is again similar to RSL.

DCDS also provides a language called TSL (Test Specification Language),
which links requirements, design, and tests. TSL is used to define test plans
and verify that those plans exhibit zompleteness of coverage.

4-49




i i Bl B g gt et e Bag™ o peh iy P A

- LabiSattalda i srd i oot f® B At Aai i S h e Aol Al Al ‘,‘»v"_-‘-‘.-t"'-‘w SR R TN T W T e,

DCDS keyH

4. Management Aspects
a. Project management

Modules and tasks are grouped into administrative units called units of code.
Thus, they can be tracked by the central database, ASSM.

b. Technical management

” LIRS AU N S e ——
' . o P S

In particular by test plan development.

5. Usage Aspects

A.  Equipment/Facilities Needed for REVS use:
Unknown, probably same as REVS for SREM.
B.  Usability
DCDS is still in the research phase, so usability is yet to be determined.
8. Transferability
A Avaiability
DCDS is still under development, release planned for 1985.
B.  Training Required
Can not be determined at this time (prior to release).
. Primary Source of Documentation

Ballistie Missile Defense Advanced Technical Center
Huntsville, AL

"Alford1979].
Mack Alford. Requsrements For Distributed Data Processing Design, IEEE,
1979.

[.v\]rurdlﬂxil.
Mack Alford. “SREM At the Age of Eight: The Distributed Computing
Design System,” Draft, December 1084,

1-50

"""""""""""""""""




A Aa s aa uar aar Bescaan e s san g _.-1'*7 0. aiat S ash Sas tiat Rait il S Bl de i i S8 St Sl et el N Tl oy T N R T e

JSD key:l

4.11 JSD Methodology Evaluation
1. General Aspects
A. Identification

JSD - Jackson System Development

Michael Jackson Systems Limited
17 Conduit Street

London, England W1R9TD

Tel: 44-1-499-6655

B.  Overview
JSD divides the process of software development into three main phases:

1. Modeling - an explicit examination of the external world with which
the system will be concerned resulting in a diagrammatic description
that clearly isolates and defines those aspects of the external world that
are of interest. The model serves as an aid to understanding the sub-
ject matter of the system and provides the core for the formal
specification of the system’s functions.

2.  Function - concerns the outputs of the system, what they should be
and how they should be generated, resulting in diagrammatic descrip-
tions attached to the functions in the previously defined model. The
completed specification consists of a system specification diagram
which defines the system as a set of logical processes communicating by
data transfer and a set of structure diagrams which define the internal
logic of each process.

3. Implementation - the system specification is converted into a form suit-
able for running on the chosen hardware by applying standard JSD
procedures (called TRANSFORMATIONS) to package and realize the

logical processes previously defined.

(' Life cycle phases supported: All

- oa




M W W e W W WS U N N Y

D. Software Categories

N2 A% N A et i A il e et S avteh - el L ~

JSD

category

Arithmetic-based

Message processing

OOO-:&

Diagnostic Software

12 | Database Management

14 | Data presentation

15 | Decision and planning aids

16 | Pattern and image processing

17 | Computer System Software

18 | Software Development tools

E.  Sustable for systems of
2. Technical Aspects

A.  Primary approach

size: All

key:l

Object-oriented for requirements with a process being an encapsulation of

local state that can

communicate with other processes;

approach is encapsulation.

B.  Supports

Capability

et

Traceability - since structure charts
assoctated with model

Functional hierarchy/decomposition

Data hierarchv/data abstraction

Interface definition

Database definition

Data flow

Sequential control flow

AA A A A A

Concurrency/parallelism - since
each process can be smplemented on
a separale processor

Formal program verification

Iterative development

the design




C. Workproducts

Data flow diagrams can be used for MIL-STD documentation.

a. Teztual

Requirements are documented as a system specification that includes a
model of the system to be developed. Structure texts (in the form of
attribute grammars) detail the logic to be used within a process.

b. Graphical

Entity and Action lists

Tree-structured entity diagrams

data flow diagrams

database diagrams

system specification diagram (the MODEL)

complete system specification diagram with structure diagrams that
describe functions.

D. Performance Specification Not addressed.

E. Operating Qualities Specification Not addressed. :
F.  Ada compatsbility ‘1:_.:
Ada Feature Supported :
Packages X ..'-
Tasks A
Generics C
Exception Handling o
Types S
Representations -
(. Quality Assurance :;:‘-“'
Manual valhidation via structured walkthroughs and author/reader cycles. j
4
H. Independent of "j'
Transformations do not assume a specific implementation language, although -
the methodology has been primarily used on Cobol development projects. R
Also independent of hardware and operating system architecture. i 1‘
e
: 4
1

4-53

’

. N PN .

L M ! B e ‘.
. .

LR
]

LR 3
= a_&

IS . Do
RS .

. - B A e 0. .~ =t - [

[ . - . L G e e « W e W ~ . . T B

N . RN . el .

) L RH

. .
PG T I RRCI . . Gt e s I R
) AR T S L. IR U U U WA w i W AP UL g iy S Sy S g vwuy o PP




o,

6.

JSD key:l

Support Aspects

A. Automated Tools None.

B. Language
The languages used for all three phases are graphical. The transition from
the graphics of detailed design to actual code is straightforward, since the
graphics symbols map easily to implementation language contro! structures
such as do...while.

Management Aspects

Technical management addressed through manual validation of workproducts.

Usage Aspects

A, Usability

Level Methodology |
Easy to Use
Moderately Easy to Use X

Moderately Difficult to Use
Difficult to Use

B.  Ezxtent of Use

JSD is a mature methodology that has seen extensive use in England.
Transferability
A, Availability

Commercially available.

B.  Training Available
There is both public and proprietary documentation. Seminars and consul-
tants are available.

Advanced Software Methods, Inec.
17021 Sioux Lane

Gaithersburg, MD 20878

(301) 948-1989

will provide consultancy and seminars. The course is five days and costs

4-54

. 0t e T, ot

4
A

.1

Ly
.“N
..‘.‘
S

- '_h
-1




JSD

approximately $6500 plus instructor’s expenses.

A course in JSD has been offered through

Rocky Mountain Institute of Software Engineering
Aspen, Colorado.

-C.  Training Required

Training/Experience Needed

months [[ USER || MANAGER || ORGANIZATION
<1 X

1-3

3-6 X

> 6

D. Primary Source of Documentation

Michael Jackson Systems Limited
Also see:

References

[Jackson1983).
Michael Jackson, System Development, Prentice/Hall International, 1983.

________________

0y

'_q_'e..';_q‘.". ., '.=‘-'l. —ato




) o

J MY,
* -':;.-:
N .
N PAISLey key:J RN
?-'_:: ]
» 4.12 PAISLey Methodology Evaluation RS0%
,‘ 1. General Aspects e
3 A.  Identification L%
‘: PAISLey - Process-oriented, Applicative, Interpretable Specification

Language

B Pamela Zave -
b AT&T Bell Laboratories -
- Murray Hill, NJ 07974 -

B.  Overview

PAISLey was developed explicitly for requirements specification of embedded L
real-time systems and takes an ‘‘operational’” approach to requirements s
specification. That is, PAISLey allows the specifier to construct an execut- g
- able model of the software as it would function in its environment. s

The primary unit of specification is the process - a simple, abstract represen-
tation of autonomous digital computation. Each process is specified by sup-
plying a “stat~ space’ (set of all possible states) and a ‘‘successor function”
on that state space which defines the successor state for each state. A pro-
cess is eyche and goes through an infinite sequence of states (a distinguished
“halted” state can be defined) asynchronously with other processes.

Because requirements are executable (by simulation), it is possible to attach
J and test timing constraints to processes. The constraints can be defined as
maximum, minimum, mean, or constant evaluation time for the process.

Since PAISLey is an applicative language, a process can only access informa-
tion in the state of another process by an explicit request. These requests
are formulated as exchange functions and allow every form of synchroniza-
tion to be defined.

o ‘

(. Life cycle phases supported:

-2 PAISLey only supports requirements specification. The design phases could
- be done with a methodology which also uses the concept of abstract
processes (JSD for one).

P

g

h“.

- 1-56

-




M hm an on S0 0 RS

D. Software Categories

PAISLey

category

Event Control

Process Control

Procedure Control

Navigation

Flight Dynamics

«lc:cn.hoaw:“:

Orbital Dynamics

10

Sensor and signal processing

11

Simulation

13

Data acquisition

2. Technical Aspects

A.  Primary approach

approach.

B.  Supports

E. Suitable for systems of size: Any.

key:J

Object-oriented for requirements with a process being an encapsulation of
local state that can communicate with other processes; has

no specific design

-; Capability
Traceability

Functional hierarchy/decomposition

Data hierarchy/data abstraction

-

Interface definition

Database definition

Data flow

Sequential control flow

A

Concurrency/parallelism -  since
each process can be implemented on
a separate processor

Formal program verification

X | Iterative development

(' Workproduels

I
IR
AT N B . N
s m e e

- - - a - . .
PR N Y T U IV WY IRV SG R, . L)

a2
R
ML
I
BIPEaRY
R




PAISLey key:J —'

The only workproduct is the model of the system in the PAISLey language.
As such, the model is not relevant to MIL-STD documentation.

D. Performance Specification
% Both timing and accuracy constraints can be specified and tested.
E. Operating Qualities Specification
Man/machine interaction can be prototyped. The fault-tolerance and secu-
rity properties of the specification can be tested since the model is fully exe-

cutable as a simulation.

F. Ada compatibilsty

Ada Feature Supported
Packages X
Tasks X
Generics
Exception Handling X
Types
Representations X

G.  Quality Assurance
Some consistency and completeness properties are checked by the PAISLey
language interpreter. Validation proceeds as a series of executions (simula-
tions).

H. Independent of:

Implementation Language, hardware architecture, and operating system
architecture.

3. Support Aspects
A, Automated Tools

PAISLey incorporates a language checker and a simulation facility, which
interprets the PAISLey code.

B.  Language

DI - Tt s e st AL T
ant a2 i Sk e e b e [T TT. WO, W




 pal L ol ol sal sl
TT’}'. L8 1 A e A gt e ma el Sollore A bl Aol St MR B . ".'}"_' i R A

T

F N
:v:'j‘n‘. Le® *:..

PAISLey key:J

The PAISLey language is based on a class of programming languages desig-
nated applicative. Execution of a PAISLey program proceeds as applications
or evaluations of functions rather than a series of subroutine calls. That is,
PAISLey is more like LISP than like FORTRAN. One advantage of applica-
tive languages is the the ease of mapping programs to distributed imple-
mentations.

Management Aspects
PAISLey supports technical (quality) management of the requirements analysis
phase of a project through its simulation facility which results in a computerized
validation of requirements.
Usage Aspects
A. Automated Tools

The primary tool is the PAISLey interpreter, others include a cross-

referencer, a type checker, and a consistency checker. PAISLey assumes the
processor is running UNIX. It also requires a text editor and a file system.

B.  Usability

PAISLey is still in the research and development, so its usability is not esta-
blished.

C. Ertent of Use

PAISLey is still evolving and has only been used under the close supervision
of its creator, Pamela Zave.

Transferability

A, Avaslability

Available on a case by case basis from Pamela Zave.
B.  Training/Erperience Required

Not established yet.
(. Primary Source of Documentatson

Pamela Zave

4-59

~~~~~~

‘‘‘‘‘‘‘‘‘‘‘‘

- AT "'"""11"‘.'\1 \."""\"*vv T var"ﬂvv‘—v‘v A
R L AL E AR RS \.‘ "LN- s - .\‘ AR AR A A I DA : . E .. A S A AARYCAARAMAMEAE ACAE St att e b ate cti s oe)
R ML T . L A A T T T A R S I S S A A A A "

[

b cosq

PAISLey key:J

Also see:

References

[Zavel982).
Pamela Zave, ‘‘An Operational Approach to Requirements Specification for
Embedded Systems,” IEEE Transactions on Software Engineering, vol. SE-
8, no. 3, May 1982.

[Zavel983).
Pamela Zave, '‘Operational Specification Languages,”” Proceedings ACM
‘83, October 1983.

(Zavel9841].
Pamela Zave, ““An Overview of the PAISLey Project-1984," ACM Sigsoft SR
Software Engineering Notes, pp. 12-19, July 1984, '

4-60

= ﬂ,
. A . I N
. 3 I A T
NN : g et
. . et
oS ! y e et e
., PR PP
. '

e a o O

e ARG AR SRR S
\, SARA keyK
g 4.13 SARA Methodology Evaluation
1. General Aspects
: A. Identification
. SARA - System ARchitect’s Apprentice
Department of Computer Science - .'Z-_
University of California at Los Angeles . ,J
Los Angeles, CA 90024 i:*‘ (
-

B. Overview

SARA is a set of modeling and evaluation tools that support a
requirements-driven design methodology for concurrent systems. SARA
encourages partition of a design or analysis universe into a system and its
environment, with explicit models of their behaviors. The system includes
tools to model behaviors (GMB), to model structures(SL1), and to model the
structure of code-modules {(MID).

GMB produces a graphics-based model of behavior in three domains: flow of 9. ,'.'.,...J"
control, flow of data, and interpretatic 1. The model described in GMB may R
be interactively simulated and the control flow information can be formally L)
analyzed for inconsistency, completeness, liveness (freedom from deadlock), o j':;.'.-_:j
and termination. L
e
SL1 describes hierarchically related structures. A designer can specify a %
nested space of identifiers which partition a design universe and encapsulate READ
behavioral models. A module encapsulates part of a behavioral model; a IR
socket encapsulates behavior related to the interface between a module and RS
its environment; an interconnection connects modules at their sockets and PTG
represents potential flow of data or control. e

GMB models are mapped to SL1 structures, providing the connection
between the hehavior of objects in the actual environment and objects that
will be instantiated during execution of the software system.

(' Life cycle phases supported: All.

) S e
1-61 RS
- N
- . . .—_
3 - Ny LI A T “
- y P N e A NPT AR Bk
FIC A o el A NPT BN - PRSP WY -] a

N e e T T

. R . PRSI At I A
At L. L PR S) ORI P
PR .. P T R T R Y o

MR A aNLA 8 S et . o0a
- e - - - - - _- _' ‘_‘ _. ~4_- . -

'.-.i'fi
SARA key:K FOi
D. Software Categories :-':::-_::
| category o
2 Event Control
3 Process Control e
4 Procedure Control .,, s
5 Navigation e
6 Flight Dynamics e
7 __| Orbital Dynamics h‘ﬁ}'-",j".
10 | Sensor/signal Processin
13 | Data acquisition wo s

E. Suitable for systems of size: Any. SN
2. Technical Aspects
A, Primary approach
Flow-oriented for requirements; decomposition for design.

B, Suppcrts

H Capability

X | Traceability (mapping of GMB to
SL1)

Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition

Database definition

Data flow

Sequential control flow

3 A PP
AR LN L)

Concurreney/parallelism
Formal program verification (not

PP P

L correctness)

; X | Iterative development

e . Workproducts

Since the requirements document is produced manually, it can be MIL-STD.
Ada specification parts can be used as the formal description of modules and
E their interfaces.

o

o

Ve

vi

1-62

j “J ;rﬂ‘&,

f
+

~

S A -
l‘ .

AR S M e S A S R < e S RS S AR A e MM 2 i 0 S/ e 1 el S e T S/ A AR A i A A AL A A N
PN ot Y e T Rl -

SARA keyK]

n]

a. Tertual 0
Requirements document, reports from analyses, QA requirements docu- T
ment, and evaluation transcripts. 2 f:

V <

b. Graphical
Design models: LRy~
structural (SL1) '
behavioral (GMB) with control and data flow
module interface (MID)

D. Performance Specification
Timing constraints can be associated with a socket.

E. Operating Qualities Specification None.

F. Ada compatibility

Ada Feature Supported
Packages X
Tasks X
Generics X
Erxception Handling X
Types X
Representations

;. Quality Assurance

Consistency and completeness of behavior models and module interfaces can
be statically checked. Validation can be performed through a simulation.

H. Independent of

Although SARA was specifically designed for specification of concurrent sys-
tems, the specifications it produces are independent of hardware architecture,
operating system architecture, and implementation language. N ¥

4-63

L ki g ane ol o
e

SARA keyK

3. Support Aspects

A, Automated Tools
SARA includes a set of automated tools. There are language processors for
GMB, SL1, and PLIP (a preprocessor for PL/1). The GMB models can be
analyzed in the domain of control flow to identify deadlock states and criti-
cal transitions that lead to deadlock.

B. Language

a. Requirements Specification

GMB can model behavior of both the software system and its environ-
ment.

b. Architectural Design
SL1 models the necessary structures to instantiate the desired behavior
captured in the GMB models. The MID models map from the SL1
structures to code modules. Because the structure of code modules is
specified independently of the ‘idealized’ structure of the problem,
analysis of various architectures for the code modules is encouraged.

c. Detailed Design

C'an be done with Ada specification parts, or with PLIP, a PL/1
preprocessor.

4. Management Aspects

SARA's support for technical management is a quality assurance requirements
document.

1-64

R S Sl A Ao M A e Sl

.-T’J:"

5. Usage Aspects

6. Transferability

A.

A.

SARA keyK

Equipment/Facilities Needed for SARA use:

Available for use under Berkeley Unix on a VAX or on MIT’s MULTICS on
ARPANET.

Usabilsty
| Level Methodology
Easy to Use
Moderately Easy to Use
Moderately Difficult to Use X
Difficult to Use

Eztent of Use

SARA has only been used at UCLA on student projects.

Availabilsty
In public domain.

Training and Ezperience Required

Training/Experience Needed
months || USER || MANAGER || ORGANIZATION
<1
1-3 X X
3-6
.6 X

Primary Source of Documentation

Department of Computer Science
UCLA

LA Gl S

AL ar st o i 2eg et - vl M e i e A sl A S s L araine s ar gt Set it st Sath A e et Baf Bl A iR DY Al ‘A A B T SN

SARA key K

L

Also see: =

I "‘.:l .
e B
v e [
[P 3

.

. .ol 2% 1]

2 PR .
)

t

References

[Razouk1980).
Rami R. Razouk and Gerald Estrin, ‘‘Modeling and Verification of Com-
munication Protocols in SARA: the X.21 Interface,” IEEE Transactions on
Computers, vol. C-29, no. 12, pp. 1038-1052, December 1980.

[Penedo81].
Maria Heloisa Penedo, Daniel M. Berry, and Gerald Estrin, ‘‘An Algorithm
to Support Code-Skeleton Generation for Concuri>nt Systems,” Proceed-
ings 5th International Conference on Software Engineering, pp. 125-135,
March 1981.

y

i

2

3
AT

{

1-66

~~~~~~~~~



o —— e oW M i Vi A e St 2ot S e B, § IR S8 N o W Wy W I N N A T TR TR SRR U T

USE key.L

4.14 USE Methodology Evaluation
1. General Aspects
A. Identification

USE - User Software Engineering Methodology

Anthony I. Wasserman

Medical Information Science
University of California, San Francisco
San Francisco, CA 94143

B. Overview

USE is a methodology to support the development of specifications, designs,
and implementations for interactive information systems. The automated
tools are TDI (transition diagram interpreter), Troll (interface to a relational
database system), RAPID (rapid prototypes of interactive dialogue), PLAIN
(Programming LAnguage for INteraction), and the USE control system
(management support),

The steps for requirements analysis are:

1. [Identify system objectives and constraints, including conflicts of
interest among user groups.

2. Model the existing system using a requirements analysis method (Struec-
tured Systems Analysis for instance).

3. Construct a conceptual model of the database, using the Semantic RS
Hierarchy model of Smith and Smith.

Produce a system dictionary containing the names of all operations, all
data items, and all data flows.

Y P
B 4
[ oA
IS ) : .

—

4
o

Review the analysis results within the development group and with the
users and customers.

-V

EChsi
[

-
v

The formal requirements specification methodology is called DBASIS
(Behavioral Approach to  the Specification of Information Systems). Each
BASIS specification of a data abstraction includes three parts: the abstract
image (representation), the invariant (behavioral characteristics that are
always true), and input and output constraints (pre- and post-conditions) for

1-67

Y

. N~
Na Yt .
. .

. Y - -

. -'. .- L . . ..> ‘. . . : - LN ..’ .. ~. LI - L PO I tT PR} - - " a ts
PP A R N N s e T I R S T A o S “ w e
PR RN Vol O ST D NS (S U S S [APPUPYEP AT T S WA RO A B I T & B TR Y W |




BRIORINCARAC R ANt A AU AR RS T A AMIEE S A A A e A AR S el Sl o (0 v 0 fa i B G A 2 gt A IR SMALEEL AAGL Al ol /AR e AR e A ~

USE keyL 1;.'.?:j
each operation defined on the abstraction. An informal narrative can be fiﬁjf':lg
associated with each specification of an operation for an abstraction. -
Architectural design constructs a structure chart of the overall design, fol-
lowing the general structure already outlined during the requirements phase.
Detailed design is done via a program design language similar to
Caine/Gordon. Both design phases are reviewed with walkthroughs.

C.  Life cycle phases supported: All

D. Software Categories

category

Arithmetic-based
Diagnostic Software
Database Management
Data presentation

17 | Computer System Software
18 | Software Development tools

b g D |
zls|e|-

E.  Suitable for systems of size: Any.
2. Technical Aspects
A.  Primary approach
Primarily object (both process and data) modeling for requirements analysis

(data flow can be done), with functional decomposition (where the functions
were previously identified in the requirements phase) for design.

4-68 R

____________

AT - .
L) W

- - S . " . ] - ™ - LI U

e W e 5 R S B . P
et e * . IO e WA e Wt
PIRT LET PRC I N T . - " . ~ LI -
i) » ) -.a . - L] -

. AT e EIA N I - FURAE Wl
R AR RS e A It R Ve o L,
PAVE-LS P SRR C GRS N5, TV, R TS, VIS LT 0, VLV t‘- LT SRS AL SV, S PU N

- m
PO



et et o P r——

B.

C.

D.

N
L
rF

F.

.',-1' C it N afi e aliatal

USE

Supports

Capability
Traceability
Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition
Database definition
Data flow
Sequential control flow
Concurrency/parallelism
prohibit)
Formal program verification
Iterative development

ol el tal lel el tal e

*

(doesn’t

4|4

Workproducts

The structure charts (of modularization) could be used for preparation of
MIL-STD documentation.

a. Tertual

Formal specifications of data abstractions and pdl definitions of
modules.

b. Graphical
Entity-relationship diagrams, semantic hierarchy models, augmented
transition diagrams for interactive dialogue, and structure charts for
modularization.

Performance Specification None.

Operating Qualilies Specification

Specification of the Man/machine interaction is directly addressed.

Ada compatibility

4-69

. - M ) - -, . -
RN AR Ca
S oo T Y -_,&:,:23':_& W

w
.

.




A atndh Sadh suiet ekl
- . e e e e

e e e W N N R T e raeam——"rmm

USE

Ada Feature Supported
Packages X
Tasks X
Generics
Exception Handling X
Types
Representations

G. Quality Assurance

gue can be simulated.

H. Independent of:

language.

3. Support Aspects

A.  Automated Tools

and version control.

B.  Language

called BASIS

formal semantics.

-~
o
-

3

.,l'_, 4. Management Aspects
s
}f? Project management is supported by the USE control system, which provides on- R
oo line information on the status of modules and the development process. )
- NS
oy A |
VL. [
[ St
Ve 4-70 RN
. . . : 1
%
MR "'.r,‘ "'.‘\, -',.‘_‘-._‘u-f ,",~ 3 ‘."l . . ' LT ’ S

S N Iy T e ST . :

3 ~ "‘ s ."( a \.\'...‘-L'N.. : N ".\‘. OO N . ‘_\.‘ . : .

W s‘ﬂ:l\. {ﬁﬁ\ )\-x].k.\.n."r)'\;\- e A At e T IR -Ai

Addressed by prototyping, consistency and completeness checking by
automated tools, and by structured walkthroughs.

hardware architecture, operating system architecture, and implementation e
Note however that some of the automated tools for code genera-
tion produce source code written in PLAIN.

The tools include code generation from PLAIN, consistency checkers, a data-
base interface, and the control system for management of documentation
a. Requirements Specification - nonprocedural specification language

b. Architectural Design - informal structure charts

¢. Detailed Design - uses a pseudocode pdl, with formal syntax and semi-

The man-machine dialo-

key.L




i
r-.
N
£ USE keyL
N

"

The USE control system also supports technical management by managing the

documentation and can be used to enforce project standards. The other tools
assist in system validation.

The USE control system supports configuration management by controlling ver-
sions of modules and systems.

6. Usage Aspects
A. Equipment/Facilities Needed for USE use:
The automated tools run under UNIX version 7 or BSD 4.1.

B.  Usability

Level Methodology
5 Easy to Use
B Moderately Easy to Use X
4 Moderately Difficult to Use
_ Difficult to Use

C. FErtent of Use

USE has only been used in a university setting.

- 6. Transferability
A, Availability
In public domain.

B Training and Frperience Required

Training/Foxperience Needed

months || USER | MANAGER [| ORGANIZATION
-
1 -3 X X
3-6
.6 X

(' Primary Source of Documentation

Anthony [ Wasserman

~
1-71
........... =
e Tl e e e e T T . .
..... - =7 . ST E N N T e - N . e e - .
et ST T * R ot . - I R S R " N R P
A i . ¥ ) . “ L L ’ PR ) . - K N T - . " .' - s - . . . . S - - » L e T -t et
el e T AT O A AT I e e e e T T T T T T e e T T et T e e N e A AT A SRR |
. . N L) - " - . P T Y e . - - . ,. - P AT . L o " o Py
RPN I AT I S A S P Ui W Y 'y U SO W - L9 Ay WAL PN W WA GOy K P e




USE key:L

Also see:

References

[Wasserman82].
Anthony 1. Wasserman, *“The User Software Engineering Methodology: an
Overview,” in Information System Design Methodologies -- A Comparative
Review, ed. A.A. Verrign-Stuart, North Holland Publishing Company, 1982.




o o e e Bt v Bt e g R ® _"V,W"'r‘r Bt Aat et Aok Skl S ek s 8 Rai il Sl et it Sa e Yo" SRR Lad Tiow e«

<. 4
4.15 Tool Set Description Format o
1. General Aspects "4
A. Identification
Gives the name and acronym of the tool or tool set and identifies the

developing/supporting organization.
B.  Methodologies
Lists what methodology the tool set supports.
. Life cycle phases supported:
Identifies which of the specification phases the tool set supports:
— requirements analysis
— architectural design (intermodule communication, data structures)
— detailed design (module functionality)
D. Software Categories

Liists standard software categories which are compatible with this methodol-

ogy.

# Category # Category

1 Arithmetic-based 2 Event Control

3 Process Control 4 Procedure Control

5 Navigation 6 Flight Dynamics

7 Orbital Dynamics 8 Message Processing

9 Diagnostic S/W 10 Sensor/signal Processing
11 Simulation 12 Database Management
13 Data acq isition 14 Decision/planning aids
15 Data presentation 16 Pattern/image processing
17 Computer System Software || 18 S/W development tools

4-73

. . - -."F - .
- . . . . < e [ e
R T AR oL S T s
p-'M Al .
o fa .
. - .

" . T e N Lo - i
LR LI - . w t

. Ve e . e - N P T A P e e e e N . .
FURPURPCEENSUNIE U IV DR 90, I I0Y VAR BRI SP. “RsN D ISP, UL SR AP WP S0 PSP 00 S0 SOV IO W W G




......................

| .
E. Suistable for systems of size:
— Small (<2,000 lines of code) ? : - :

— Medium (2,000 - 10,000 lines of code) ?

— Large (>10,000 lines of code) ?

- 2. Technical Aspects
A.  Supports . f :
N T
Traceability e
T Functional hierarchy/decomposition IEEERE
: Data hierarchy/data abstraction e
r Interface definition ]
: Database definition C

-

Data flow oo
Sequential control flow R
Concurrency /parallelism B
)

Formal program verification
Iterative development

B.  Workproducts
Are they relevant to MIL-STD documentation?

a. Tertual

'_ Description of reports, documents produced.

tj‘ b. Graphical

- Description of diagrams produced.

::_f: (".  Performance Specification

ﬂ Dces the toolset have the capability to specify or test timing and/or accu- .

s racy constraints that apply to individual system functions? A
L'::' D.  Operating Qualities Specification T
. , : . . L
V'. Does the toolset have the capability to specify the following constraints? s
oy L~
20 <
:\' M N "-'J
4-74
RS R
S A
RS
B . S
3 “ e




— Man/machine interaction

— Fault-tolerance

— Portability o
— Reusability
2 — Security f:;:,
) E. Ada compatibility g
Ada Feature Supported
- Packages
) Tasks C
_ Generics
. Exception Handling
£ Types X
et Representations
j:'_‘_f X indicates support of feature.
-Z-_j«\. C indicates conflict with feature.
g F.  Quality Assurance
j:;::_ How does the tool set support
%
A a. Consistency checking ?
—

b. Completeness checking ?

c. Validation ? by a manual or computer-processed procedure ?

d. Rapid prototyping ?

- Does it prototype the man-machine interface? the software modulariza-
o tion scheme? the functionality of the system? Is the execution mode of

the prototype a simulation or a symbolic execution? Is the prototype
suitable for pre-release’

e. Performance validation ? of correctness or efficiency?




Satetud wi Al h Tl S e Sl dnd anine A Sal e el o i e A aAr - el i e e AR B e T
by o LT R U TR R T A SN D N e T
N

3. Support Aspects
A. Degree of Integration

Vertical - within one phase of the software life cycle? Or horizontal - across
more than one phase of the software life cycle?

B. Language

Identifies language(s) used for specification phases and its degree of formal-
ity.

— Requirements Specification
— Architectural Design
— Detailed Design
4. Management Aspects
Does the tool set support project, technical, or configuration management? How?
6. Usage Aspects
A.  Equipment/Facilities Needed to use

Identify specific hardware and software (operating systems, graphics pack-
ages) required to use the tool set or associated automated tools.

B, Usability

Level Methodology

Easy to Use

Moderately Easy to Use
Moderately Difficult to Use
Difficult to Use

. Frtent of l'se

Has the tool set been used outside the developing organizatic n? How much?

176




"ETER T W ey e e T e T S e y o S
- y— - e -, - - 'l . T - v v, - . . N - . - - . - . - - - . - .
T LS A RS A S i Ara s Sevl e 2~ Bt L g e BRI M T e T NCaN NS YR et Y EEE I

'l':"
doT

-
4

8. Transferability T _j

A. Availability

Is the tool set in the public domain, commercially available, etc.?

h B. Training Available
— Public documentation

— Proprietary documentation

— Consultants

— Seminars - scheduling and cost, if known

C. Training and Ezperience Required

months || USER || MANAGER |ji ORGANIZATION
<1
1-3 O |
3-6

> 6

),
4
Training/Experience Needed A
1

The table entries reflect the amount of training and experience time required
to use the tool set effectively. A USER is an individual who develops or
assists in developing requirements and/or design specifications. An ORGAN-
IZATION is a group of users developing specifications as a team.

. 1
Sl
- '. . .<1
RS
RRCRAN,
] 4
= " o -

i

L U At L

- - “ et e . . 0 . - . N - o N
S a4 e S T e ew s Tl (At Al e et a et PGP SO SR PR LA N N s e S L S S S




4.16 TAGS Tool Set Evaluation
1. General Aspects

A.  Identification

TAGS
:~ Teledyne Brown Engineering
3 Cummings Research Park
o Huntsville, AL
- (205)532-2036 -- Jerry Gotzold
N B. Methodology
[ More elaborate version of SADT methodology.

i’d C'.  Life cycle phases supported: All.

D. Software Calegories

A
!

= # | category

h 2 Event Control

Process Control

Procedure Control

Navigation

Orbital Dynamics

3
4
5
6 Flight Dynamics
7
g

Message Processing

10 | Sensor and Signal Processing

11 Simulation

13 | Data Acquisition

F. Suitable for systems of size: Any.
2. Technical Aspects

A, Supports

1-78




e an am ey
Pl

‘E ) ".
- . . v N »

g
FR 4

(M gk e o m 22 Ty
N PR T e ey
e Y . LI IRCIPP N
' L Lo AP

e Yy
v ot PR T P I
- o [P C

~

B.

.

TAGS keyC_a

Capability
Traceability
Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition
Database definition - as iypes
Data flow
Sequential control flow
Concurrency/parallelism
Formal program verification
Iterative development

bl bl bl el bl ke

”~

Workproducts
They are not relevant to MIL-STD documentation.

a. Tertual

The textual workproducts are tables that contain definitions for the
input/output across an interface, for variables internal to a process
block, and for constants internal to a process block. These tables have
a standard format. All diagrams can be commented.

b. Graphical

Schematic block diagrams (SBD) which describe all components of the
system and the data interfaces that connect them. Input/output rela-
tionships and timing diagrams (IORTD) which show the overall control
flow for a single schematic block diagram component. Predefined pro-
cess diagrams (PPD) which depict reiterated sequences of actions.
Data structure diagrams (DSD) which graphically represent data
defined in a parameter table.

Performance Specification

The ability to specify and test timing constraints is expected in third quarter
1985.

Operating Qualities Specification

Man/machine interaction is not directly addressed, but a human can be
modeled as a process element.

4-79

- . . DY - AR
ORI - - . - - YRR . .t . - - B B . - .
PRITPNE ISPy (R T CHPINE SNPErEIY SUSIv. i W ARy St SRRy NN SRS R T T I B T e e




TAGS key.C_a

E. Ada compatsbility

Ada Feature Supported
Packages X
Tasks X
Generics X
Exception Handling
Types X
Representations

Quality Assurance

There is a tool called a diagnostic analyzer that assists validation of the
requirements. It does static analysis of individual diagrams for consistency
and completeness. Consistency of interfaces and flows can also be checked.

Rapid prototyping

Prototyping of the functionality of the software system specified is expected
in third quarter 1985. The tool will be generating Ada source code.

3. Support Aspects

A

Degree of Integration

The tools are well integrated both withir and across phases of the software
life cycle since they use a common database and the human interface is uni-
form across the tools.

Language

The diagrams use a formal language called IORL (Input/Output Require-
ments Language). IORL consists of mathematical expressions, types (charac-
ter, numeric), and graphical symbols to represent processes and flows. Since
the methodology is strictly top-down decomposition, IORL is used for all
three phases.

4. Management Aspects

The tools directly support technical management (quality assurance) by static
analysis, by maintaining a common project database, and by sirnulation of the
de<ign.

AP IR

4-80
P SN -
TeTAT e s -
PSS AP

s . .
e L e e PR e e . . e e e Vel
P AP SIS ¥ SRR ST Y. P U I VU ST R S S LY. '."L{- PURPUE IR, " S  GRL IR A



UV TV IV WUV ST
-

A tool for configuration management is expected to be released at the end of

. aed aii gt AN

1984.

5. Usage Aspects

At St A AR A g S gt i

TAGS

A. Equipment/Facilities Needed

B.

C.

G AN AL SO A

keyC_a

Tags requires APOLLO workstations and a VAX running VMS.

Usability

Eztent of Use

Level

Tools

Easy to Use X

Moderately Easy to Use

Moderately Difficult to Use

Difficult to Use

TAGS is a new product, still undergoing development.

8. Transferability

A.

C.

Availabilsty

TAGS is commercially available. A license for 1-8 workstations and 1 VAX

is approximately $105,000.

Training Available

Teledyne Brown supplies proprietary documentation, consultants, and sem-

inars (some of these items included in license fee).

Training and F’zperience Required

Training/Experience Needed

months || USER || MANAGER ) ORGANIZATION
1 X X

1-3 X

3-6

-8

A L




TAGS keyC_a

A developer needs a 2-3 week course which consists of an overview, details of
using the tools, hands-on experience with the tools, and a walkthrough of a
small system that was previously designed.

4-82

= - AT e mt. -
1alala e lal el s




ARGUS keyD_a

4.17 ARGUS II Tool set Evaluation
1. General Aspects
A. Identification

ARGUS

Boeing Computer Services Company
PO Box 24346

Seattle, WA 98124-0346

(206)

B. Methodology
A CAD/CAM software engineering environment for design that uses the
Yourdon methodology.

C. Life cycle phases supported:

All specification phases are supported, however the requirements analysis
phase is only supported by data flow diagrams.

D. Software Categorses

Same as Classie Yourdon -

# | category

2 Event Control

3 Process Control

R Message Processing

15 | Decision and Planning Aids
16 [ Pattern and Image Processing

I, Suttable for systems of size: Any.
2. Technical Aspects

A, Supports

1-83

.',\__'. e

L .
. *. . .-- . . .‘. . ..t Te LI} - . ]
PRI P VALY P WL V. O PP




IR L L B T L oL “EL AL A N A A Al Y el ™
- Lt S e - T = Ll i o et Sl i i e Mt - § Ty Y

proon

\
t

ARGUS keyD_a e
Capability s
Traceability - planned as future -
capability oy
X | Functional hierarchy/decomposition j‘{:j"
X | Data hierarchy/data abstraction :-.:_‘::
X | Interface definition gy
*» | Database definition - Via a date E‘j
dictionary =
X | Data flow :_:;:4
X | Sequential control flow g
* | Concurrency/parallelism -planned
as future support of Real-time
Yourdon
Formal program verification
X | Iterative development

B.  Workproducts
They are not directly usable as MIL-STD documentation.
a. Texrtual

Specification of modules in proscribed formats, customizable by project
and PDL descriptions of module behavior.

b. Graphical
Data flow diagrams, structure charts.
C. Performance Specification
Not currently supported, planned as future capability.

D. Operating Qualities Specification

Man/machine interaction is directly addressed. Argus can produce sample
report formats or screen layouts. The ability to specify security properties is

p -y P
: L < d
a * R
. . G e
;. . LT
. et e N

F{ i planned as a future capability.

~‘ E. Ada compatibility

E‘{ Although Ada is not directly supported, the resulting designs should have
N same compatibility with Ada as the Classic Yourdon methodology does.

484

R T e e RS P -
B ) N L NN

F T e S T T A R R A -
Sciniedabebinton St il A A ac u L a g o o e e s e T




B mtd R S mni AAE’ e gnes B G e Bl e oL sas o Bl Jte i et g Nal el sel bl el bl ek Bal & LY el el “ah e N R Slka " Ae Rte RUA § GaliD ol S e B S e e i S T T PR

NN

ARGUS keyD_a

A S

F. Independent of

In theory ARGUS workproducts should be independent of the planned
implementation language. However, the development tools for programmers
support Fortran and Cobol.

3. Support Aspects
A. Degree of Integration

The tools are well integrated both within and across phases of the software
life cycle since they use a common database and the human interface is uni-
form across the tools.

B. Language

The graphic notations of Yourdon methodology are used in requirements
specification and architectural design. Detailed Design can be done with a
pscudocode pdl.

4. Management Aspects
— Project Management

The management toolbox includes scheduling tools for controlling both pro-
jects and activities. A tool for tracing specific action items assists manage-
ment in controlling activities across projects. An electronic spread sheet has
proven extremely valuable to project managers in better controlling resource
expenditures. Electronic scheduling and phone list capabilities are also pro-
vided. Various other managerial aids will be provided in future releases.
{from “What About CAD/CAM for Software? The ARGUS Concept” by
Leon G. Stucki, 1983 IEEE report # CH1919-0/83/0000/0129, pp 129-137}

— Technical management

The tools directly support quality assurance by static analysis, and by main-
taining a common project database.

Configuration management
Implemented, not yet released

5. Usage Aspects

4-85

- < < . BRI BT S - . -t RS . .
PR P T A A TRt TIPS A NN I 1 P TP AT N A PS P, AL U | PRI . DUV DR Rt S RSP RLERENESAEEEE




KRS RS S S AP Sl it i Rar® St it i el Shalis A G M SR A S A SN avie 8 S i Ee NE e S "4 Antati vt dalo St ank fedh BN Sed Sak A0 Ak Aed Ak Sl A f Sk Sl At o- o

ARGUS keyD_a me

A. Equipment/Facilities Needed
|'.§.-_-.-‘

Currently, the use of ARGUS II requires an IBM PC-XT. ARGUS is, how- |
ever, intended to be portable to other systems. o

B. Usability L
e

Level Tools t_;;,_‘:,;j
Easy to Use X L
Moderately Easy to Use e
Moderately Difficult to Use

Difficult to Use

C. Exztent of Use
ARGUS has been in continuous development since the late 1970's. It has
only seen use within Boeing. ]

6. Transferability

A, Availability
Commercially available from Boeing Computer Services. L"“:‘;

B.  Primary Source of Documentation - 1
Boeing Computer Services 3

C. Training and Experience Required

Training/Experience Needed
months || USER || MANAGER || ORGANIZATION
<1 X
1-3
3-6
- 6

:

t

o

’

5 T

R o e T e -
alal o} oA . fl R

4-86

et 4
St

r
&

T




EXCELERATOR key:D_b

4.18 EXCELERATOR Tool set Evaluation
1. General Aspects

A. Identification of Tool set

EXCELERATOR
Index Technology Corporation :‘\-';L_\-:}_‘
Five Cambridge Center RSY
Cambridge, MA 02142 ety
(617) 491-7380 ENEAE

B. Methodology

1

T

Classic Yourdon. . j

C. Life cycle phases supported: All. Fq

D. Software Categories

Same as Classic Yourdon -

@ category

2 Event Control

3 Process Control

8 Message Processing

15 | Decision and Planning Aids
16 | Pattern and Image Processing

E.  Suitable for systems of size: Any.




> EXCELERATOR key:D_b

N 2. Technical Aspects

A. Supports

Capability
Traceability
Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition
Database definition - Via a data
dictionary
Data flow
Sequential control flow
Concurrency /parallelism
Formal program verification

ol el Rl el talts

”~

Iterative development

B.  Workproducts
The workproducts are not directly usable as MIL-STD documentation.
a. Textual

Can generate textual mini-specs (for one module) for project reviews,
and report and screen mockups.

b. Graphical

Data flow diagrams, minispecs (logic within a module), data model
diagrams, structure charts.

(. Operating Qualities Specification

Man/machine interaction is  directly addressed with report and screen
mockups.

D, Ada compatibility

Does not directly support Ada, but compatibility of designs should be the
same as using the classic Yourdon methodology.

4-88

..
. % < -
1S Tl R

' B "\, \,'_'\'

. CoT T PR
PR SR G Y URE UL TR W W i Y WO B eG




;,"',m,-mv Bash Are tus dad sy A Bl iee SR Sd Ged Bk 2e 8 el Bl Tl B AR e R T R A W W N Wy T WO W W W W% WE W,

\':

EXCELERATOR key:D_b

E. Quality Assurance
Consistency is only assured for items described by the data dictionary. One
of the automated tools does completeness and consistency checking of data
flow diagrams.

Support Aspects

A. Degree of Integration
The tools are well-integrated within a phase.

B. Language

Requirements Specification and Architectural Design are done with the
graphic notation of Yourdon methodology.

Management Aspects
Technical management is supported by a common project data dictionary that
assists manual procedures for quality assv-ance. Tools that address project
management are planned for the future.
Usage Aspects
A.  Equipment/Facilities Needed

Use of EXCELERATOR requires either an IBM PC-XT, 3270-PC or PC-AT.

B.  Usability

Level Tools
Easy to Use X
Moderately Easy to Use
Moderately Difficult to Use
Difficult to Use

(. FErtent of Use

EXCELERATOR is a commercial product. It has been used outside of Index
Technology Corp., its developer, on more than ten projects.

1-89

) L . B EIPIE Y e - . e te R L e e N e s
o DN S-S TETE VRV R VI VEPU DR WE T 1 UG W G i WP WP wey WA copamrs e PR

'
N 3

|
f"
t ey

- . - R I R
. . St
. PR Vit a st
. . . RN
. . ¥ et T g
. . R S
. N " . 8 v A} . . I
: P . co4 I R I
PR TP T o A

.'rt!!.
Y S I

il

[l SR
S ¢
. s
. N -
. e ’
NN

|

&
'

aaaad

o

;
N
o
-

:".k ‘L‘:':
A

-

sl




EXCELERATOR

Transferability

...............

Avaslability

EXCELERATOR is commercially available through Index Technology Cor-

poration or local IBM branch offices.
Primary Source of Documentation
Index Technology Corporation

Training and Ezperience Required

e

Training/Experience Needed

months || USER [ MANAGER || ORGANIZATION
<1 X

1-3

3-6

> 6

4-90




T T T YTV TV R T Ll 4 A YA Bt S S Bl S Sind 2l SA 8 M A A et S e SR St det el et San Sns et S dun Ses e Seees o)
ST A B & e Miafdiin A I hal* ot i D Bl =it

PROMOD key:D_c :
l 4.19 PROMOD Tool set Evaluation B
e
:'. 1. General Aspects T
A. IHdentification
PROMOD '
GEI Systems House -
Albert Einstein Strasse - 61 - j.j—_*j
D-5100 Aschen, Germany T
Tel: 02408/130 ernZd]
R
B. Methodologses "
PROMOD uses classic Yourdon for requirements analysis and a combination . {
of Yourdon Structured Design and the principle of information hiding for Y
design. As a notation for detailed design, it is possible to use use a pseudo- =
code (like Caine-Farber-Gordon) pdl or or the Jackson Structured Program- ]
ming notation. fi--'tj
C. Life cycle phases supported: All. » g
fe cycle p pp e
D. Software ('ategories froeme
B _:
Same as Classic Yourdon - ::j
# | category .
2 Event Control E:%
3 Process Control j
8 Message Processing .
15 | Decision and Planning Aids
16 | Pattern and Image Processing

I Suitable for systems of size: Any.

4

4
Lo
T

1-91

. ¢
R R ]
o

.....

[
S
h;.,LJ




PROMOD keyD_c

2. Technical Aspects

A.  Supports
I Capability o
Traceability .
X | Functional hierarchy/decomposition :
- X | Data hierarchy/data abstraction L
X | Interface definition .
X | Database definition - Via a data
dictionary o
X | Data flow * ]
X | Sequential control flow T
X | Concurrency/parallelism - can .
specify synchronization
A Formal program verification - y
‘. X | Iterative development ::
B.  Workproducts
They are not in MIL-STD form, although some of the graphical output can
be used to develop MIL-STD documentation. T

The graphical output includes:
Data flow diagrams, minispecs (logic within a module), Nassi-Schneidermann
charts if desired, call trees, and data hierarchy trees.

The only textual workproduct would be any pseudocode produced for
detailed design.

(' Ada compatibilsty

o
\
ot

PROMOD does not directly support Ada but resulting designs can be com-
patible i the following ways:

1-92

[ G G S-S WAL I i W DT NY S YASTP ¥ LU . TR A P W W Y. 3 L N LSO oY AW




— Pudiiah et Sai Sladh Sath  and Slaitliat ek _af et S et A s s ity ~ S " AN N S A e A el

PROMOD keyD_¢

| _Ada Feature Supported
Packages X =5
Tasks X B
Generics X :-j;::'
Exception Handling Z:,'::-
Types X 't
Representations ;;3

Ta
.
PRl
<%
s

]

D. Quality Assurance

‘l = ,.v
AR

o

Consistency checking is supported by syntax directed editing along with
syntax and semantic checking. There is an analysis for checking complete-
ness.

3. Support Aspects

A. Degree of Integration
The tools are well integrated both within and across phases of the software
life cycle since they use a common set of VMS files and the human interface
is uniform across the tools.

B.  Language
Requirements Specification is done with the graphic notation of Yourdon
methodology. Architectural Design is done with the graphic notation of

Yourdon methodology. Detailed Design is done with either a pseudocode
pdl, or the JSP notation, or Nassi-Schneidermann charts.

oA 4. Management Aspects

b . : . .

- Project management is based on a project model and a project database. These

F can be used to manually produce a work breakdown structure and milestone

= definition. Tools to support these tasks are expected in the future.

: Technical management is based on tools that directly support quality assurance by e
static analysis, and by maintaining a common project file structure. The metho- =

‘- dology recomn.ids imetries for quality assurance ala Yourdon. The transition S

from phase to phase is supported iy the project file structure.

‘:_‘:: 6. Usage Aspects

- 1-07% o




SRRt~ b S e~ e e S A S e e e R A

™ A
,'.h:‘.-

PROMOD EFeyD_c

A. Equipment/Facslities Needed

PROMOD requires a VAX running VMS or an IBM or Victor CPU.

B.  Usability

‘ Level Tools
Easy to Use
Moderately Easy to Use
Moderately Difficult to Use X
Difficult to Use

C. FExtent of Use

PROMOD has been used outside the developing organization on more than
10 projects.

6. Transferability

A.  Availabilsty
Commercially available.

B.  Training Avaslable

There is both public and proprietary documentation available on PROMOD
from its developing organization, GEI.

C. Training and Ezperience Required

Training/Experience Needed

months || USER || MANAGER || ORGANIZATION
<1 X

1-3

3-6

>~ 6

4-94

............... L e S A Y

A A
S L T o
PR T VT PR TS P WS PRI Y-




i " ‘BB AAd MM 0o & el b Jm S ah s R s 8 eua s Wi N SRS A R ARG AL AL L Sl Sal Sl AL Lar S aNi SPECERC A ety

- PSL/PSA
b=
- 4.20 PSL/PSA Tool Evaluation
L
Y
P
-5 1. General Aspects
B A.  Identification
':f_f PSL/PSA - Problem Statement Language/Problem Statement Analyzer
o Dan Teicherow
ISDOS Project
o University of Michigan
3 . Ann Arbor, MI 48109
B.  Methodologies
- Basically documents data flows, whether for requirements or design analysis.
Can be used with any methodology that uses data flow diagrams.
C. Life cycle phases supported:
Supports data flow analysis of requirements analysis and architectural design
s phase. Can maintain some module documentation.
':3::" D. Software Categories
) Depends on methodology PSL/PSA is used with.
[ E. Sustable for systems of size: Medium and Large.
:
oy

LS

W,

= 4-95

N
L

T




e i e A R S L R e B 0 SRy B o R e il B A B "R P St ral S lL Sl Sl Sl Sl Sl S Gk S A0 sl Bdt Sl A Sl G AcA Ar el A b Bl I i S e aaid "'"_"I'-‘

PSL/PSA T

2. Technical Aspects

A. Supports

Capability
X | Traceability
Functional hierarchy/decomposition

X | Data hierarchy

X | Interface definition

* | Database definition - Via a dala
dictionary

X | Data flow

* | Sequential control flow - has an IS
TRIGGERED BY attribute

Concurrency/parallelism
Formal program verification
X | Iterative development

B.  Workproducts

‘ Extension of the basic tool can provide reports consistent with MIL-STD
documentation [The Hughes’ version known as ASAT has this capability].
{ a. Tertual
=
}' -

The contents of the database PSL/PSA maintains can be reported in
various ways.

b. (Graphical
Data flow diagrams.
. Ada compatibility Not applicable.
D.  Quality Assurance
The tool maintains consistency of the information in the database and
records when updates are effected. The database can be analyzed to find
dangling entries or definitions not used anywhere. The PSA portion of the

tool can be used to attempt to verify properties concerning the information
and data flows maintained by the database.

1-96

»-" .

. ; >
95" i

._u..ulL M
e LA.;-..;AMA\“ ‘_lA L‘ALA-LI

o R LT
| L\ PO SRR AR



T Sl Anh lars i e e dian das e iint ias A Sah dntin it et SaiUE A i S A B el i e

NN X'A

f ij.‘--,}-';:?j

PSL/PSA

R
PR W )

E. Independent of

Implementation language, hardware architecture, and operating system
v architecture.

T
!
i

3. Support Aspects
A. Degree of Integration
There is basically only one tool.
B. Language
PSL (Problem Statement Language) is basically a data base manipulation
language with predefined keywords to represent the relationships the data-
base is maintaining. The syntax is formal; the semantics are semi-formal.

4. Management Aspects

The reports that can be generated from the database can be used for checking
some of a project’s progress against milestones.

The consistency of data flow can be checked by the tool which analyzes data
flows.

The database can contain responsible person information.
5. Usage Aspects
A.  FEquipment/Facilities Needed

PSL/PSA is available on a wide range of CPUs. Note that its computa-
tional requirements are quite heavy.

B, Usability

&\

Level Tools
. Easy to Use

- Moderately Easy to Use X

Moderately Difficult to Use
Difficult to Use

4-97




PSL/PSA "5"'"‘

C. Eztent of Use
Eate

PSL/PSA is a mature software product. It has been used on a large number PR

of information systems development projects by a large number of different S

organizations.
6. Transferability
A. Availabslity

PSL/PSA is commercially available for about $40,000 and there is a govern-
ment owned version called CADSAT.

B.  Training Avaslable

Proprietary documentation, consultants, and training courses are available
from the ISDOS Project at the University of Michigan in Ann Arbor.

C. Training and Experience Required

Training/Experience Needed

months {{ USER_|| MANAGER || ORGANIZATION
< 1 X

1-3 X

3-6 X

> 6

D. Primary Source of Documentation

Dan Teicherow

;‘i.;.ltg't.‘:
‘Al
AL A Sy S

1
-

Je—
AR
Uil

: ,:'A{"...:»

1-98

o
D

v
. .
B

"- .

........ Dt R SO e
ALY RV R YRRy X W

5

A

y

b
o v
o, - -
?

:

¢

Y

f




Cavass JYN vl Al S ie g sha e S Cated SSCROU sl B A A s A Ar S A inal A SN Al S e et et 1 SO S Al M S e e i it SR M S g

5.0 SOFTWARE ACQUISITION LIFE CYCLE

5.1 INTRODUCTION

This section provides brief paragraphs describing two specific standards for the software e
acquisition iife cycle: AFR 800-i4 and MIL-STD-SDS. Currently, AFR 800-14 is the “
standard for Air Force software acquisition. MIL-STD-SDS is in final stages of develop-
. ment as the DoD standard for software acquisition. The two standards do not conflict

with one another, although they do use different names for their life cycle phases.

The intention of this guidebook is to aid the project manager in selecting a methodology
and support tools for a particular system category and life cycle phase. Additionally,
the guidebook will aid the project manager in deciding which methodologies will support
the specification activities of the remaining life cycle phases. The guidelines will assist
the software development manager in selecting specification technologies and tools to
assist in meeting the specification needs of the system requirements, software require-
ments, and software design activities.

[
-~

The following paragraphs describe the two life-cycle standards mentioned above and, o
further, describe how the requirements and design activities are supported by the A
methodologies in this guidebook. -

5.2 AFR 800-14 SYSTEM ACQUISITION LIFE CYCLE =

The system acquisition life cycle categorizes overall program management activities. Its o
five phases extend from program conception to termination. It can be thought of as the
larger system framework within which the software development life cycle takes place.
The five phases of system acquisition are shown in figure 5-1.

5.3 AFR 800-14 SOFTWARE DEVELOPMENT LIFE CYCLE

The software development life cycle fits within the larger program framework of the sys-
tem acquisition life cycle and may « ~cur within one, or span a number of system acquisi-
tion life-cycle phases. Specifically, software development comprises six phases: Analysis, —
Design, C‘oding and Checkout, Test and Integration, Installation, and Operation and e
Support. These six phases and their definitions are shown in figure 5-2.

S|
o
~
E_.n'.,
A0
DN Y
LY
BARAR
.‘\“\
51 e
ot
fa v
RS
C.
RS
AN
. .
To--
4
................................. -~ =Y TN
. « e ata . e St Tt et . . .t - . R . L AR N T ) I I P AR Y NI I
T T e T N AU UL A IR IO R, \ .
.......................................................... PSR e e e
-------- "‘ - L)
. RN P I SO
R S o S I T e T .',\_.\),.‘_._‘,n‘\._L.‘_.;v Ny
R T S A ST T I D S e B e RS R RS S
Tt e et A e DAY L TR N L3 UERL T SR ¥ Y { .
LAY A WA VRIS WL VLA VLI Wy L S ST S, WAy 6.5 W, T, VIR MR Y, Y- 4.



T T Il TN N S L e N Yl L S S S A AN B A

R A AR

B i St el Padha s e Shat S Sadt as dan who et~ S I SndiE Bl L5 RARE Al
ST T E T A A ‘J
D
4
o

AFR 800-14 SYSTEM ACQUISITION LIFE CYCLE

and alternative solutions conceived. Preliminary
requirements are formulated.

PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE §

CONCEPTUAL T
VALIDATION T

FULL-SCALE L

DEVELOPMENT oot

PRODUCTION Lo

DEPLOYMENT s

Conceptual: In which solutions to problems are planned, refined,
SR
L

Validation: In which major system characteristics are refined
through studies, preliminary inodeling, computer ==
program development, etc., to validate the choice _
of alternatives and to decide whether to proceed B
into the next phase.

Full-Scale In which all the major items comprising the system(s)
Development: are designed, fabricated, tested, and
integrated. The operation of the system closely
resembles the operation of the production system.

Production: In which all the production systems are completed,
delivered, and accepted.

Deployment:  Lasts from the time the first system becomes
operational until the last system is removed from
operational inventory.

Figure 5-1. AFR 800-14 System Acquisition Life Cycle.



AFR 800-14 SOFTWARE DEVELOPMENT LIFE CYCLE
PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE 6 PHASE 6
REQUIRE
MENTS
ANALY-
SIS
DESIGN
CODING/
CHECK-
ouT
TEST/
INTE-
GRATION
INSTAL-
LATION
OPER-
ATION/
SUPPORT

Requirements
Analysis:

Design:

Coding and
Checkout:

Test and

Integration:

Installation:

Operation and
Hummrt:

Defines functional, interface, and performance requirements

for software.

Develops a design approach, including mathematical models,
functional flow charts, and detail flow charts. Also

defines relationships among components.

Coding translates flow charts into computer programs and
data. Checkout converts intial code and data into an
operational computer program. The software is operational
when it uses predefined inputs and produces correct outputs.

Tests the computer program against requirements in the
development specification. Tests all of the computer
program, including individual computer program function or
module tests through total computer program formal
qualification tests.

Includes loading and running of computer programs after

successful qualification and integration.

Assesses the operational suitability of the system.

Figure 5-2.

AFR 800-14 Software Development Life Cycle.




______

5.4 DOD-STD-SDS COMPUTER SOFTWARE DEVELOPMENT LIFE
CYCLE

The DOD-STD-SDS (a draft SDS Documentation Set has been released that contains
DOD-STD-2167, MIL-STD-483, MIL-STD-490, and MIL-STD-1521) is a standard that
establishes requirements to be applied during the development and acquisition of
Mission-Critical Computer System (MCCS) software, as defined in DOD Directive
5000.29. The standard may also be applied to non-MCCS software development and
acquisition.

The DOD-STD-SDS standard comprises six phases: (1) Software Requirements Analysis,
(2) Preliminary Design, (3) Detailed Design, (4) Coding and Unit Testing, (5) CSC
Integration and Testing, and (6) CSCI-Level Testing. All analysis performed prior to
phase 1 is termed Pre-Software Development. The six phases and their relationship to
the basic reviews that occur during the software development life cycle are shown in
figure 5-3.

5.5 RELATION OF METHODOLOGIES TO LIFE CYCLE PHASES

The guidelines in this document are intended as an aid to the project manager during
the requirements and design phases of the software acquisition life cycle. Requirements
analysis can be broken down into two components: system requirements analysis and
software requirements analysis. Software design is a single phase.

Figure 5-4 shows the relationship of the methodologies described in section 4.0 of this
document and the requirements and design life-cycle phases.

54




-

e T— e
} e . e e
. PR . SRR S S S
< . . A ML I RN
e - y e e fe e t

Yyroyw

A
P .
i

LMt ahiiC e SR MG AR S

DOD-STD-SDS SOFTWARE DEVELOPMENT LIFE CYCLE
PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE 6 PHASE 8
SOFTWARE
REQUIRE-
MENTS
ANALYSIS
PRELIM-
INARY
DESIGN
DETAILED
DESIGN
CODING
AND UNIT
TESTING
CSC INTE
GRATION/
TESTING
CSCI
TESTING
Software Define and analyze functional, performance, interface, and
Requirements qualification requirements for each CSCI.
Analysis:
Preliminary Develop a top-level design of each CSCI which completely
Design: reflects the requirements specified in the SRS and IRS(s).
Detailed Develop a modular, detailed design for each CSCI.
Design:
C'oding Code and test each unit making up the detailed design.
and Unit
Testing:

cse
Integration
and Testing:

SCl
Testing:

Integrate units of code entered in the developmental
configuration and perform informal tests on aggregates
of integrated units.

Conduct formal tests on each CSCI to show that the
('SCT satisfies its specified requirements. Record and
analyze test results.

Figure 5-3: DoD-STD-5SDS Software Development Life Cycle




%A

LIFE CYCLE PHASE

REQUIREMENTS DESIGN

METHODOLOGY

~ Qoo oTNEE

DSSD

HDM

SADT

SA/SD

SCR

SREM

~ T

VDM

DCDS

JSD

PAISLey

A=~z mo =
bl tal el el tal B Eo
ol tad ol B tad Ea Kl Fad Ea

SARA

P P Ea g o
P b

USE

where X = yes, covers this phase.
* — partial coverage.

Figut. 5-4 Life Cycle Phase Coverage

. ! R Sy v B X ., !
. R Lt % A LT . .
B HS AL SPIL LRI AT A B
R s : S tLa e .
S s D R B YA e . 2t RS o B
L B e L N o I S D

TR
., "_ N

\ . e

(11 P S

L < PR ' ]

ik X

e

LIRS
PR
P
.

1,
P

11
v
]

r o a
L,

: PR
(RS R R
‘L’ll
N

LI




W RSt anacAve SAELACE SRS TS At o Dt Sttt A

6.0 SAMPLE PARAGRAPHS FOR STATEMENTS OF WORK

6.1 INTRODUCTION

This section provides sample statement of work paragraphs, which are examples of the

- various approaches that can be used to specify the use of software requirements metho-
N dologies or software design methodologies with the aid of the Specification Technology
R Guidebook. The sample SOW paragraphs are written to allow various degrees of con-
e straint in the imposition of requirements and design methodologies, from tight con-

straint to mild guidance. They may need to be modified or specific details added by the
Air Force acquisition manager to fit the development environment of a particular pro-
jeet or the contractual relationship being considered.

The information in parentheses (...) must be filled in by the acquisition manager. The
SOW paragraphs require that “implementation details”” be provided by the Computer
Program Development Plan; but the acquisition manager may choose, in his specific con-
tractual arrangement, to use another CDRL item in which to request this detail. Exist-
ing data item descriptions (DID) for the specification and development of software may
not include provisions for the types of information generated by the selected/specified
methodology. Therefore, the DID may need to be modified to provide a section for the
newly required information.

For tightly constrained requirements (sections 6.2 and 6.3), reference the desired metho-
dologies in section 4.0 by name and section number.

6.2 TIGHTLY CONSTRAINED--DIRECT SPECIFICATION

The following paragraph can be used to specify specific methodologies or techniques
identified in the guidebook. The guidebook would thus serve AF personnel in selecting
spectfication methodologies for mission software products. The methodology for each
software product, such as ground support software and in-flight software, would be
determined separately.

<
e
RATRS
'-\‘.~1
6-1 TN
L -
R
1’ -
~
-
) - . -
* ’ " - - '.- A\
- N . - NEN
T e ST . L et LT <o
R R P S . LT e T T T T T e
- p - A . - - - - - - . ~ - LT - . . - . . . - -
NN RS R P AP VR W T P i WA P PR YRR A DU W LD § Tk 0P . . SoE- e P P R IR VPR PO, W




PO A M o o S S et Al T e e ~ PRI R A N S e I M S0 A SO A A M B i i SN Sadr e - g

.t
e~ d
. -J
e e
DT
MR |

Tightly Constrained--Direct Specification

The computer program (...requiremcnta/dcsign..l.j shall be
specified in accordance with technigues described in the
Specification Technology Guidebook, RADC-TR-85-XX. The
Jollowing methodologies shall be used:

Methodology Guidebook Phase(s)
Section No.

The methodologies and techniques, and necessary detasls,
shall be described in the Computer Program Development
plan (see CDRL).

6.3 TIGHTLY CONSTRAINED--SUBSET SPECIFICATION

The following paragraph can be used to specify a minimum set of techniques plus the
use of the guidebook by a contractor to select additional specification or design tech-
niques for the entire software project or an individual computer program.

Tightly Constrained - Subset Specification

The computer program (...requirements/design...) shall be
(...spectfied/ designed...) with techniques deseribed sn

the Specification Technology Guidebook RADC-TR-85-XX.
As a minimum, the followsng specification (or design)
methodologies shall be used:

Methodology (uidebook  Phase(s)
Section No.

Selection of additional techniques or methodologies, using

an overall significance level (OSL) of {...) ahall be

" performed in acrcordance with procedures described in section
v 2.0 of the Specifications Technology Guidebook. The

[{ ] resulting sel of methodologies and necessary smplementation
details shall be described sn the C'omputer Program Development
Plan (see ('DRL). Rationale for the selection of those
techniques, from the candidate set tdentified by

the Specsfication (Jusdebook, shall be provided.

.......

..... A
L St s e
.V v I G P PR . P N S A I PR, - o




AD-R162 457 SPECXFICRTION TECHNDLOGV GUIDEBOOK(U) BOEING REROSPRCE
’ 0 SERTTLE WA_ D_R ADDLEMAN R AUG 85

RRDC TR-85-135 F38682-84-C- B
UNCLASSIFIED F/G 972

Y

NL




A o AR N e R e i — e -~
.. .AKAS,. M ENTATS ChA N AN N e N it AR y oLy e
. . w4 AN PR UM e RN SN ACIC S ST B SEANE T
.. en . WL _.--‘.J‘A..',‘.".r"'\D\l\_“mn

s 84k

-

& i W g
= j

N
(&

28 s s,

I

D MICROCOPY RESOLUTION TEST CHART
! NATIONAL BUREAU OF STANDARDS 1963-A

o
A

T

P
et tatitala

%) B3

P

o

]
t"" ’I'n.




L g%

6.4 MODERATELY CONSTRAINED SPECIFICATION

The following paragraph can be used to specify the use of the guidebook for selecting
software requirements and design techniques. An overall significance level (OSL) is the
only predetermined factor. The paragraph does not constrain the developer to use
specific methodologies, nor does it identify specific phases during which the methodolo-
gies are to be applied.

Moderately Constrained

The computer program (...requirements/designs...)

shall be {...specified/designed...) in accordance with

the methodologies described in the

Specification Technology Guidebook, RADC-TR-85-XX.
Selection of the methodologies, using an overall
significance level (OSL)of (... ) shall be performed in
accordance with procedures described in section 2.0 of the
Specification Technology Guidebook. The resulting
methodology, and necessary implementation detasls, shall be
described in the Computer Program Development Plan (see
CDRL). Rationale for the selection of the methodology,
Jrom the candidate set identified by the Specification
Technology Guidebook, shall be provided.

6.5 LOOSELY CONSTRAINED SPECIFICATION

The following paragraph can be used to allow the contractor extensive freedom in select-
ing software requirements and design methodologies.

Loosely Constrained

The computer program (...requirements, designs...) shall

be developed using methodologies described sn the
Specification Technology Guidebook, RADC-TR-85-XX. Selection
of techniques shall be in accordance with procedures
described in section 2.0 of the Specification Technology
Guidebook. The resulting set of methodologies and
techniques, shall be described tn the

C'omputer Program Development Plan (see CDRL). Rationale
for the selection of those methodologies and techniques,

from the candidate set identified by the Specification
Technology (Guidebook, shall be provided.




::}'::: :_‘::
o
R o
S5
o APPENDIX A: ARMAMENT -
-
Y Y i _— 34
‘.‘- The software usage described in this appendix is based on a representative site devoted e
R largely to this mission. Therefore, the procedures covered in this appendix many not -
o include all aspects of the armament mission. P
s Ly o
Al. ARMAMENT DIVISION A
.*:': ,\.:_.
ot g
ot The Armament Division (AD) is a developing agency for tactical weapon systems, and -
o particularly for threat, missile, and scoring systems. All embedded software systems
development at AD is performed by contractors. The contractors are usually small, spe- o
el cialized, high-technology companies, but larger aerospace companies also contribute to ey
- the systems development. The software contained in these systems typically tends not
BN to be critical, even though the systems themselves may be critical. The contractors
T design, develop, and test the software according to contractor-defined standards and
: under the genceral contractual-level supervision of Air Force personnel. Testing practices =
i vary widely among the many contractors supporting the AD.
e A2. AD MISSION ]
The primary mission arez applicable to the Armament Division is armament. Secondary r_i
::‘;:'_- mission areas are acronautical and missile/space, including avionics systems and air-to- oy
\\j air and air-to-ground missile systems. ]
:;-'_-l;: A3. SOFTWARE DEVELOPMENT ENVIRONMENT
J
The most significant category of software is the operational software for embedded sys-
2‘," tems. The embedded systems developed at AD are generally found in three categories:
.r'."f
el a. Threat systems. Defensive and offensive radar, targeting and tracking systems,

and electronic countermeasures.

b.  Missile systems. Air-to-air and air-to-ground missile systems.

c.  Scoring systems. Proximity detectors for projectiles, used in aerial gunnery train-
ing.

The data processing and administrative software areas was not surveyed; typically, o
these systems are in place and are not subject to extensive new development. Also, the Bk
embedded operational software systems are more germane and critical to the primary '
mission of the AD.




General Environment. Software development is conducted as a part of embedded
systems development. System requirements are defined by Air Force personnel and then
the systems and the software are designed, implemented, and tested by contractors
selected in competitive bidding. The Air Force may participate in the definition and
specification of detailed requirements. The companies range from small businesses to
major aerospace corporations. Procurement requirements for software are similar for all
systems development and their implementation is monitored by design reviews, audits,
and detailed reviews of contractor-furnished documentation.

Software (computer programs and associated data) typically comprises a significant
share of the contractors’ system development effort (labor), ranging up to one-half or
even more of the total effort.

Standards. The Armament Division complies with the 800-series Air Force regulation
for systems development. The following regulations and standards are applicable to
embedded systems and software development:

e AFR 80-14 (Test and Evaluation)

o AFR-800 (Management of Computer Resources in Systems)

MIL-STD-483 (Configuration Management Practices) x

MIL-STD-1521A (Reviews and Audits)

MIL-STD-1490 (Specification Practices)

MIL-STD-1750A (16-Bit Instruction Set Architecture)

MIL-STD-1589A (JOVIAL J73 Language)

MIL-STD-1815 (Ada Language)

IEEE STD-716 (ATLAS Language)
e American National Standard X3.9 (FORTRAN 77 Language)

Administration. Contractors are required to identify and account for embedded
software as computer program configuration items (CPCI), including support computer
programs (such as ATE software). The programs are controlled using allocated
configuration identification and product configuration identification, with associated
Part I and Part II specifications. CPCl-to CPCI and CPCIl-to-hardware interface
specifications are also required. Computer programs are subjected to a sequence of
reviews and audits: preliminary design review, critical design review, functional
configuration audit, and physical configuration audit.




A WY’

Languages. Approved high-order languages are mandated for embedded computer
programs. The specified languages are JOVIAL J73, Ada, and FORTRAN 77, in that
order of priority. The specified language for automatic test equipment (ATE) is
ATLAS. Exceptions to the priority of the approved list must be authorized; the use of
assembly language or nonapproved higher order language (HOL) subsegments must also
be authorized.

Support Software. Contractors are encouraged to use off-the-shelf components and
support tools. The following support tools are required:

a. An efficient compiler (in terms of code generated) and code generator for an
approved HOL.

b. A software development station with aids, including a programmable read only
memory (PROM) programmer, if applicable.

c. A complete support software library, including but not limited to an editor, link-
ing loader, and run-time support routines.

d. Compatible hardware and software peripheral equipment

Capacity Requirements. Embedded software is required to have a 30% spare capa-
city in memory utilization. Also, the software is required to exercise only 70% of the
computer’s throughput and input/output channel capacity.

Coding Standards. Contractors must establish coding standards for software
development. The following minimum requirements are imposed:

a. Modularity. Computer programs shall be modular in design. Module
identification shall be along functional lines with ease of maintenance being a
prime consideration. To the maximum extent practical, data base information
shall not be provided as in-line code. Rather, data shall be provided in a separate,
non-exccutable module or file.

b. Structured Programming. The principles of top-down, structured programming
shall be used to the maximum extent practical. Each module or submodule of the
computer program shall be designed with a single entry point and a single exit
point.

c.  Comments. Computer program listings shall contain comments that completely
describe the functions being performed in each program module.

At SOFTWARE CHARACTERISTICS




[N

1 A

-

ra s W

At

The most common categories of software developed are embedded operational pro-
grams and ground support systems, particularly for system tests using ATE. The
computer programs range from small (under 16K statements) to large (64K to
200K statements), the project size ranges from small to medium, and the develop-
ment periods are relatively short (between 1 and 3 years). Emphasis is placed on
the adequacy of documentation, with the following document items being

representative:
e System specification
e Computer program development specification (Part I)
e Computer program product specification (Part II)
e Computer program development plan (CPCD)
e Configuration management plan
e Interface control document
e Operator’s manual
e User's manual

e Computer program test plan and procedures

The criticality of the computer programs developed at this site ranges from zero to
two. Ground support and system test programs are considered criticality zero,
while operational programs are either criticality one or two. Missile and weapon
systems software and flight control systems software are considered more critical
than telemetry, simulation, display, and scoring calculation programs. However,
no distinction was evident in the level of requirements for criticality one or two
software.

Only general information on the characteristics of the software was obtained for
the three categories of systems developed at the site (threat, missile, and scoring
systems). These are discussed in the following paragraphs.

Threat Systems

The principal languages used in program implementation are FORTRAN-77 and
some assembly language routines for special processes, such as input/output han-
dling. The software for these systems has been typically programmed on minicom-
puters, such as the ECLIPSE, NOVA-3, VAX-1t, HP 1000, ROLM, and PDP-

A-1

B TIDORIN
S NER “r
S Eree

L ! :}
Y B e
B M 1

Caind




T W T A W T W ] W W Y

Tarrgrre- LA B S M C e gt ana i el I AR S <1 AR AR MR dad

11/LSI-11. The system functions they perform include ground systems, antenna _'-;-f-j-‘."]
control, network interfacing for mission data, servo/slave control, and target g
scenario simulation (used in electronic warfare air crew training). Representative o
functions that are implemented in software include the following: « }‘::
pS e
N
e Interface to keyboard, CRT, and disk. i

e Radar ranging and position calculation.

e Servo positioning.

Message handling.

Radar systems monitoring.

e Console control interface.
e Radar systems simulation.

Tracking control.

Target and threat data interpretation.

A4.2 Missile Systems

The principal languages used for embedded operational computer programs are
JOVIAL, J73, and assembler. Because of the throughput performance require-
ments and limitations on available onboard memory inherent to missile systems,
assembly language is commonly used to program the missile-resident computer
programs. JOVIAL is used in non-missile-resident software and ATLAS is used for
ground checkout programs. The onboard programs typically occupy 40K to 62K
bytes of memory. The functions performed by the onboard programs include the
following:

e Navigation

Autopilot
e Executive control

Guidance

A-5

A

AL R AR L T G -
RPCPR R N0, P el e o
RATSERRR TS - .

SRR e e

T T T T e T D R
P EREN ‘:A}_A\A).A“ WY,




e Tracking and stabilization

e Fusing

e Downlink telemetry

e Electronic counter-countermeasures

e Built-in-test
The ground systems developed for missile contracts performs the following func-
tions:

Data link interface

Command receiver

[y . <.
£ vy B
d. i

Spyeyge - o~ - L
) -'..“-

v
]

ARSI

.
v
-

Radar processing

NG

Ground test

’
oy
. .
its
»

3
i

The ground test (ATE) software is developed and executed on minicomputers,
such as the PDP-1l; flight software is targeted for execution on a special-purpose
16-bit microprocessor, such as the General Missile Processor.

A4.3 Scoring Systems

Examples of scoring systems are the Digital Doppler Scoring System, Antenna
[dentification Scoring system, and Aerial Gunnery Target System. These systems
typically are targeted for 8-bit or 16-bit microprocessors, such as the Intel 8080
and 8086. They are often coded in assembly language, using the Intel Develop-
ment System. The software functions performed encompass the following:

e Graphics

e Trajectory calculation

e Performance and statistics calculation

.'\:;‘.\ J'_ 5_‘¢_r ) ‘ OO

A RN '-'Q'"'

)‘ )’ 3‘ "-\ '\-(7‘\ ons
tals VAL R




et G0 ot~ i =aitl - W= al- SIS o k™ E e Ml et

.:'-:.:
.. .'4
o Trajectory calculation algorithms 2
.2 e
e Analog-to-digital conversion ;4

e Telemetry (discrete and continuous)
e Front end formatting and filtering

A5. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys
performed as part of the preparation of this and previous handbooks. The first
draft of this list was reviewed by representatives of this Air Force mission. How-
ever, it is possible that the list is not complete, or that another individual from the
same organization would have described or categorized the software types
differently. The number that follows each software function is the assigned
software category. This software category is 1 of 18 standard categories defined in
section 2.3.2 and it is used in path 1 to determine candidate methodology selec-
tion.

1. Threat Systems -- defensive and offensive radar, targeting/tracking systems,
electronic countermeasures.

SOFTWARE FUNCTIONS CATEGORY
controls and displays 14
message handling 8
radar range and position calculation 5
radar systems monitoring 10
servo positioning 10
target/threat data interpretation 16
tracking control 3

Gumided Weapon Systems -- air-to-air, air-to-ground missiles, smart bombs.

SOFTWARE FUNCTIONS CATEGORY
autopilot 6
built-in-test (BIT) 9
downlink telemetry 16
A-7
""" ST A
RIS Ly : NCPETEETE VORI SR

PP T ) VPSP T Y T W R VSR SwPr ST RN

R T A T R R R R TNV ERTRA T I T m FWHLYTFNE LW DT a P UMLH NL TN D o e e

oo
aoiad




-y

W e W A .t ' SRS M e U glie Ya bl U Skt Ant An it e Sl W e e 1 el MRl Ol = A L

) 3
~"."~ ;-
.::: electronic counter-countermeasures 10 K
oo executive control 4
P fusing 2
- guidance 3
launcher sequencing 3
mission data preparation 12
- navigation 5
tracking and stabilization 3
3. Scoring Systems -- proximity detectors for projectiles; used in aerial gunnery
training. :
I SOFTWARE FUNCTIONS CATEGORY L
";,1: analog-to-digital conversion 13 . =
front end formatting and filtering 13 oy
e graphics 14 e
o~ performance statistics calculation 1 '_-;';,‘_{ﬁ
£ telemetry 13 {1".'7.{':
' trajectory calculation 5 Y,
trajectory calculation algorithms 5 _':u",‘--‘:
.
s
.

A-8

Lo




NG AN R

.‘\
B
.
¥
s
S APPENDIX B: AVIONICS
1%
} o
N The software usage described in this appendix is based on a representative site devoted o]
N largely to this mission. Therefore, the procedures covered in this appendix may not
o include all aspects of the avionics mission. :
\ il
Bl1. AERONAUTICAL SYSTEMS DIVISION (ASD) ;::.._,
o ASD is a developing agency for weapons systems equipment, including avionies,

automatic test equipment, crew training devices, and flight control and
reconnaissance/C3l systems. System and software development are typically contracted
out; the development contractors tend to be medium to large size aerospace corpora-
tions, with substantial technical expertise in weapon systems development. The systems
N and embedded software are developed under well-defined contractual requirements and
monitored by on-site representatives and frequent reviews of activity and documentation
» by ASD personnel. A wide diversity of software is developed by ASD, including
' numerous aircraft avionics and control systems, and communications systems software.

;':.' Development activities are controlled by Government standards and testing practices
are fairly uniform, adhering to AF regulations and uniformly defined testing require-
ments, imposed by the SOW.

B2. ASD MISSION

The primary mission of Aeronautical System Division (ASD) is to acquire aeronautical

systems that meet the needs of Air Force users such as Strategic Air Command, Tactical
) Air Command, Air Training Command, and Air Force Logistics Command to provide
k. maintenance and support systems. Virtually all systems and equipments are developed
< by contractors, who are also responsible for development (and sometimes maintenance)

- of the computer programs and computer data.

. Since there is very little weapon system software developed by ASD personnel, the main
activities of ASD software engineers and software managers are to (1) assist in preparing
the computer resource elements of specifications and requests for proposals, (2) partici-
. pate i evaluating contractor proposals during the source-selection process, (3) monitor
S the progress and change activity during system development, and (4) assess the degree
) to which requirements are being satisfied. These software engineers and managers
interact with other engineers and managers involved with the system and report their
findings throngh appropriate ASD internal channels to program management for status,
A understanding, and decisions. In certain programs, Government personnel are assisted
o in their tasks by support contractors commonly called Systems Engineering and Techni-

a cal Assistance and independent verification and validation (IVEV) contractors. V&V

~

R
. -
)
e
St
e
PRI
st
[T
BT
LR
4.-.i
s |

. P
L Y R
las

)
i
v
i
3
e
B .
s
[Ar Ve S

j:',:. B-1

1]
vy

,
4
‘
Sh e
o' 1
A . .,
. a'| o "‘ '.
A ! .

s
:

.

'

-

.

[

’

s
PRI
“aim m i

s

‘
3
‘
et
v » e
x
.

'

N




e ST ETE TR Y N ) g A
el ARl o - AN I S A St i S A RS A il S s B il el tal sok Soll Sl in il Sod Ael Ml talk ol el oo VW W T R T R e

v
e
.:‘r{‘;’:‘:i
contractors are usually focused on software issues, while SETA contractors have a j'?'<j:,'-:,§'<:
broader scope with software as one of the elements within that scope. .,3.__;
| B—

B3. SOFTWARE DEVELOPMENT ENVIRONMENT

This appendix covers five major types of weapon system software developed at ASD,
including the development and mission support software associated with each type. L"':"‘i
These five types are categorized for convenience as avionics; automatic test equipment; A
air crew training device (ATD); flight control; reconnaissance; and command, control,

communications, and intelligence (C3). The software developed by the ASD contractors :':::;-::;
is highly varied from category to category. Furthermore, the software within each S
category is far from homogeneous in its nature. .

Avionics Software at ASD (Overview). Avionics software usually encompasses the
software aboard aircraft, airborne strategic missiles, and some air-to ground missiles
acquired by ASD. Aircraft avionics operational flight programs (OFP) are generally
divided into two categories: (1) offensive avionics, including such functions as naviga-
tion; air data computation; weapons management; sensor data reduction and controls;
stores management; target recognition and designation; cockpit controls and displays
terrain avoidance; terrain following; computer executive functions; and communicat.ons;
and (2) defensive avionics, including electronic threat detection; threat discrimination;
threat avoidance; a variety of jamming techniques, controls, displays; and computer exe-
cutive functions, The specific set of avionics functions depends on the nature of the air-
craft (air-to-air fighter, air-to-ground fighter, multirole fighter, fighter bomber, strategic
bomber, cargo, tanker, reconnaissance, or trainer) and the specific requirements for that
aircraft.

On board automated built-in-test functions or central integrated test systems are used
to determine hardware and system failures, to notify air crews for assessment of the
effect on mission performance, and to notify ground crews for maintenance actions.
These software functions may or may not be considered part of the avionics, depending
on individual perspectives with ASD.

Detailed information regarding avionics software is contained in the following para-
graphs.

a.  Requirements. The software functional and performance requirements are gen-
erally derived by contractors from avionics system requirements of the same type.
In addition, the Air Force may specify certain soltware design requirements that
may change over the years, depending on the advancement of technologies.

Generally, modern avionics software and firmware are distributed among special-
purpose computers of the "minicomputer’” class and among microprocessors.

ST e . iy * . )}
P ", . - AT LI Tt .. R 4 ' . * : LN
. LIPS W '~ . P P ol ” L. W W A O WV Y O W ‘.'-‘.'A'{l\;"x‘;' . .

e i et A NN yyryryyyzo-r R AR

PR . ST S ey U TR WY i S S W S




adiatc A 24 M Il SR s - S G MM b M o ia e ni A S A M ¥ Satii N N S N T i S R e A A S |

" Bee
[ L
I .
L

Communication among processors is usually according to the protocol defined for
serial multiplex buses in MIL-STD-1553B. The OFP is a real-time program usu-
ally operating under an executive concept of rigorously scheduled function execu-
tion in the foreground activities for each mode of the mission. The scheduling
timeframe for foreground is a part of the design of the software, based on how fre-
quently the required data are updated to achieve mission performance. Less criti-
cal functions operate in the background and are usually scheduled on a time-
available basis, with higher priority activities interrupting those of lower priority.
This rigorous scheduling is imposed to simplify the design concept and to ensure
repeatability during software and system test so that transient anomalies are
minimized.

- — o
AT SRS SEN et
S . " ST

b. Language. Until the B-1 program and the F-16 program, avionics software was
exclusively programmed in assembly language. With the successful use of the
JOVIAL language on the above two programs, the Air Force standardized on the

JOVIAL J73 language (according to MIL-STD-1589B) for all avionics applications ]
(unless an approved waiver based on technical or cost issues is granted). Offensive :Zj
avionics software using JOVIAL usually has about 80% of the object code gen- " ?
erated from JOVIAL source code with the remander in assembly code. R

Input/output functions (not supported by JOVIAL) are relegated to assembly
code. With this 80/20 mix, the JOVIAL expansion of code and timing is
estimated at 1596 over that of well-done assembly code.

c. Size. The size of avionics OFP’s varies considerably with application. For sim-
ple fighter aircraft, the OFP may be less than 3,000 instructions; whereas for a
strategic bomber the total OFP size may be 100 times greater. As the functional
requirements increase, so do the sizes of the OFP and its data tables. The Air
Force usually requires a margin on sizing, timing, and communications throughput
to provide for future modification and growth of the avionics suite. These margins
may be initially specified in the range of 156 to 509 of total capacity, but the
tendency has been for software growth to use a significant amount of this margin
before development is complete.

- PV N g : -
’ . " - L .
' . ! ". . P v

d.  Development facilities. Typically, avionics software is developed on a general-
o purpose host (IBM 370, VAX 11/780, etc.) in JOVIAL and initially targeted for
[ the host. After error-free compilation of units, some minor checkout takes place
on the host. Units are than recompiled on the host and targeted for the flight
. computer.  Some unit and module testing 13 done through an instruction-level
. simulation or interpretive computer simulation on the host, but this is usually
e minimal because of long running time and slow turnaround. A software develop- -
[ ment laboratory (SDL) is used for module and computer program component o
[ checkout and integration. This laboratory simulates (usually on Harris type or

b VAX computers) other system hardware elements and drives the software in real

F' time on breadboard processors. Each processor in the distributed system is at first
b

0
ke

driven Ustandalone” to test the software in that one computer.

B-3




R Rat N 8 N Mabiiin Sl = 4 e SR I RS SR R bl Sude snit St Wl el sel e i Sl atef TR

A more extensive facility, the System Integration Laboratory and Test Facility

(SILTF) is used by the software development team to integrate the various com- =

puter elements so that the distributed system may be exercised with as much real e

equipment (rather than simulated equipment) as is economical. After this phase, R

the software is handed over to a separate test team (within the same company),

which conducts tests on the SILTF according to rigorous test plans and procedures ~
* developed by the contractor and reviewed by the Air Force. Digital and graphic c
;. data are recorded to verify correct functional performance against the verification :;E:
- cross-reference matrix contained in section 4.0 of the CPCI development e
. specifications. Software problem reports or discrepancy reports are written by the S
y software development team, and corrections prepared and periodically incor- e

porated through contractor configuration control procedures. Retest is accom-
plished after corrections are implemented.

Test Equipment Software (Overview). There are three generic types of automatic
test equipment that are procured by ASD for aircraft: flightline test equipment, inter-
mediate shop test equipment, and depot test equipment. The purpose of the flightline
ATE is to heck out aircraft systems to isolate faultly black boxes, or line replaceable
units (LRUs). The intermediate shop test equipment designed for combat bases uses
ATE to isolate faults in LRUs to specific electronic cards, or shop replaceable units
(SRUs), which are then replaced. SRUs are either discarded or sent to one of five U.S.
depots where the third type of ATE isolates the faulty components on the cards, which
are then repaired and returned to inventory.

Detailed information follows regarding test equipment software.

Software categories. There are usually four categories of software that are part of
the ATE software: (1) the operating system, which is usually provided by the ven-
dor of the computer (often a commercially available machine}; (2) the support
software, which includes compilers or interpreters, assemblers, linkers, and loader
(often commercially available); (3) control software, which controls the various
electronic devices (signal generators and the like) that are part of the tester; and
(4) wunit-under-test (UUT) software, which activates in sequence the control
software and measures the appropriate response of the UUT for that test condi-
tion. The UUT software also identifies the faulty elements of the UUT. The two
most modern ATE developments are those for the F-16 aircraft and the Modular
Automatic Test Equipment (MATE) program.

T

ARASAOA

R ) (L

P A
- EN ’ ‘\ ook

4,

TR

':" ; 3

1

o
1

=g

[a.om 0% as SR ol 4
¢ [

Language. The ATL software (for the first three categories above) is usually writ-
ten in assembly language and FORTRAN, with the UUT software usually written
in some version of ATLAS. The current Air Force standards are IEEE Standard
C/ATLAS 716-1982 and 717-1982. The MATE program is an effort to standardize
on ATE interfaces for future equipments. MATE is examining the use of JOVIAL
J73 rather than FORTRAN for future ATE software and is advocating the use of

.
a8

LIPS

-

~r
.
'

i N9

P

B-4

(
'{;

SO o . e

g
” N

SRR e YA, s
oo b e




” Coad R Wy W Pl gl il A gt Jiadl A el Soll ek Sl ol
8 lav A ast fat aps et giav gys bt gne it fat Sab liad tia® Gat Rt Sat (bl N RAANAGMA MMM YA sl S B> A A A S A A T Tm e

, P
Oy "f‘r Ch
DOt S5

1)
L
Culal

AELS,S
. -" A,
174" a

the above IEEE standards for ATLAS.

L
(]
»

T~

Development process. The requirements process usually starts with a Test
Requirements Document (TRD) for the equipments to be tested by ATE. The
TRDs are usually prepared by the designers or manufacturers of the units. From
the TRDs and previous experience, a weapon system contractor or an ATE con-
tractor derives or selects the test station requirements, which include the operating
system and control software requirements. From the TRDs and detailed documen-
tation on the UUTs and test stations, the specifications for UUT software are
derived. In more recent systems, these documents have been reviewed by IV&V
contractors, which the SPOs have indicated to be beneficial and cost-effective.

iy’
' -,
£, N .
fefe, &t
i e~ S
[£]

e A
»

-,
-

d. Testing. For economic reasons, the tests to be implemented in ATE software can
never be totally exhaustive. There are many failure modes possible to a UUT,
either singly or in combination; consequently, those that constitute a high percen-
tage (9075 to 95%) of all failures are implemented in the UUT software.

It is not economical to test every fault isolation option in UUT software on actual
test hardware. Since the fault itself must be inserted into the UUT to conduct the
test (this may be difficult to do without inserting multiple faults) and since the
number of test units available may be limited, UUT software testing usually is
slow and expensive. Usually for tests witnessed by the Air Force, 50 to 100
different tests are run on the software against a single, actual UUT. Remaining
errors, problems, or needed test programs are resolved during the software mainte-
nance activity, with some economic justification.

e. Special requirements. Fault tolerance is seldom a requirement for ATE software.
If there is a software fault in the tester or the UUT, the philosophy has been that
the fault should be repaired rather than provide software to work around that
fault. Self-test is usually provided in the test station so that test station hardware
failures may be isolated and repaired quickly to bring the test station back on line.

f.  Development environment. Modern systems normally compile, interpret, and
assemble on the test computer. An exception to this is the F-15 intermediate shop
test equipment system, which compiles the UUT software on an IBM 360. This
approach is now deemed to be less efficient. Much of the debugging is done on the
tester itself with a real hardware UUT in place, turn-around through a separate
host takes too long, and the minicomputer in the test set has the capacity to do
the hosting job.

Neither environmental simulators nor simulations of the UUT are used. The first
is not needed and the second is not considered effective. Writing and debugging
the simulation of the UUT is considered more expensive than the present methods
that use the actual UUT hardware.




Simulator Software (Overview). ASD acquires a variety of automated crew training
devices, ranging from simple part-task trainers, which provide a training element that
may be as short as 8 to 10 minutes duration, through full weapon system trainers, which
may simulate an 8 to 10 hour mission for an entire strategic bomber crew, including
pilot, copilot, navigator, flight engineer, and electronics warfare officer. For pilot train-
ing, these air crew training devices present all of the cockpit instruments and displays,
pilot controls, window and heads-up displays, motion effects, aural cues and effects, real-
istic aerodynamic response for the simulated aircraft, engine responses, vibration, and
avionics equipment behavior, including sensor behavior and weapon release.

a. Virtually all of the functions are simulated in software on one or multiple commer-
cially available 32-bit minicomputers. In a recent system (F-18), a copy of the air-
craft avionics computer with its flight software has been included in the simulator
itself, rather than simulating the flight programs on a general-purpose computer.
Commercially available operating system software, peripheral devices (tapes, disks,
printers, CRTs, etc.) and their control software are generally used. Applications
programs that simulate the aircraft function and perform much of the instructor
station operation are specified to be written in FORTRAN.

b. Software characteristics. The fundamental control philosophy for simulator T
software design is a prescheduled, synchronous timeframe for those highly cyclic o
aircraft activities with other lower priority activities running in the background on
an interruptible basis. Modularity (one function per module), top-down design,
and separation of data from program instructions are usually requirements on the
software effort. The software generally checks the ranges and validity of
instructor-supplied parameters and provides fault data for maintenance purposes.

rleT .
L
PTG O S

c. Specifications. Usually the entire ATD is a single configuration item of which the
software is an element. The system specification for the ATD indicates the func-
tions to be represented in the system, the general level of fidelity, the required
margins for computational speed, bus throughput, directly addressable memory,
and bulk memory (usually disk).

d. Testing. The fundamental adequacy of the software and simulator performance is

judged through formal tests in which experienced pilots aircraft. Other elements ::::."-_:

of the system, such as the instructor station capabilities, are verified by objective - ‘1
tests. ORI

. . . . .. . )
Flight controls (Overview). Digital flight controls and digital engine controls ol
represent relatively new areas of computer application at ASD. Both involve the pri- A

mary issues of high performance and flight safety. Whereas the computer resource
activity for the three applications previously discussed have had at least 10 to 15 years
g of history and evolution at ASD, these control applications are relatively new and are
i ] not yet implemented in an aireraft scheduled for production.

.




a. Language. Development of flight control software has to date been in assembly
language but will no doubt be done in HOL in the future as mature compilers

become available. The general development and test procedures are similar to
those for avionics software. _-}'_"_-'
b. Software characteristics. The control law implementation for multiaxis stability Tl
and aircraft control are highly algorithmic in nature with different algorithms and o]
different control gains for different flight modes or regimes. The software is writ- by
ten against prescheduled time increments so that periodic data updates and con- S
trol computations are completed at a cyclic frequency to maintain an adequate o
margin for stability and control. Less important functions are scheduled in the iy
background, some of which may be triggered on an event rather than on a cyclic R
basis. -
The preparation of flight control software requires a thorough understanding of

the hardware implementation, both in its failed states and its unfailed states, as g
well as an understanding of control theory. The testing of this software is compli- s
cated by the requirement to test the system both in its nominal state and in its =
large number of failure combinations. T

¢. Testing. ASD/ENF is currently determining what will be necessary in the
software requirements and test area for safety qualification. The character of ST
flight control software can be generally ascertained by a review of the advanced
fighter technology integration (AFTI) programs being pursued by the Flight
Dynamics Laboratory in the Air Force Wright Aeronautical Laboratories.

d. Special requirements. In general, the sensor and computational hardware will be
triple or quadruple redundant so that failure of one or two processors would not
jeopardize flight safety. Sensor data will be cross-strapped among the processors 2
so that each can operate on the full set of sensor data with identical software.
Comparison of input data from similar sensors will be used to isolate failed sensor S
strings. Comparison of output data will be used to identify failed processor ele- S
ments. The fault-tolerance requirement (hardware fault detection and isolation) is
a key requirement and adds considerable complexity, particularly if battle damage =
causes aerodynamic and control surface changes.

Overview of Reconnaissance and C3]I. ASD is responsible for the acquisition of
ground systems that receive (from aircraft sensors) data regarding the ground threat
environment. These data, such as radar digital maps or ground electronic emissions NN
information, are processed to determine the nature and location of various threats.

Upon threat identification and location (during a real battle), the ground computational -
system, in conjunction with human controllers, may (1) plan an action against some of R
the threats, (2) allocate weapon and aireraft resources, and (3) control the flightpath of R
the aireraft and/or its weapons to the vicinity of the selected targets.




DR it s S S I AN S A A RO R A0ttt Sl Ap b S de N B e AT I G B S RN BN I AL G G pad RAdk s it - ) - adii adui o g e g

a. Hardware. These systems may be implemented in commercially available or mili-
tarized versions of commercial computers. These are usually of the mini or super
minicomputer class with special-purpose, high throughput processors for signal
processing and distributed, tightly coupled parallel processors for the remainder of
the processing.

b. Software. FORTRAN and assembly are usually the languages used for the appli-
cation software that is structured and modular. The development is usually on e
the minicomputers used for the project, and the testing procedures parallel those K
used in the SILTF. =

Future flight control software will interact with the avionics software (1) to
achieve automated delivery of weapons and (2) to use avionics sensors. A key
requirement on this type of software will be that errors in the avionics system
shall not propagate into the flight control software. This may be a difficult
requirement to validate.

B4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys per-
formed as part of the preparation of this handbook. The first draft of this list was
reviewed by representatives of this Air Force mission. However, it is possible that the
list is not complete, or that another individual from the same organization would have
described or categorized the software types differently.

The number that follows each software function is the assigned software category. This
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in
path 1 to determine candidate methodology selection.

A.  Airborne Systems

1. Avionics Systems

a. Mission Avionics

SOFTWARE FUNCTIONS  CATEGORY

aerial delivery 3
automatic approach/landing 4
communication

control/display processing 14

data bus control



navigation/guidance

real time executive

self-test

sensor control

sensor data reduction 1
sensor test/credibility 10
terrain following/avoidance 2,16

QWO MNW»m

b. Offensive Avionics

SOFTWARE FUNCTIONS CATEGORY

stores management 1
target recognition/acquisition 16
weapons control 3

¢. Defensive Avionics

SOFTWARE FUNCTIONS CATEGORY

jamming 10
threat avoidance 2
threat detection 10
threat discrimination 16

2. Flight Critical Systems

a. Flight Control
SOFTWARE FUNCTIONS CATEGORY

digital flight control 3
sensor data processing 10

B-9

k! T

-

BERAY

.
NS
e
U

."‘. RSN S A _-~..'. - a0 S A T
3 Sl A A LY DU WYY v PP W



b. Fuel Management

SOFTWARE FUNCTIONS CATEGORY

fuel management 2

¢. Engine Control

SOFTWARE FUNCTIONS CATEGORY

digital engine control
engine cycle data acquisition
fault detection and accommodation

B. Ground Systems

1. Air Crew Training Devices

SOFTWARE FUNCTIONS

aural system

computation system (executive, support,
maintenance software)

digital radar land mass system
electronic warfare system
electro-optical viewing system
gravity seat systems
instructor/operator station
motion systems

student station

visual system

2. Automatic Test Equipment

3
13
2,9

CATEGORY

>
)

—

-t W WWW LW

—

SOFTWARE FUNCTIONS CATEGORY

control software
system software (compilers, support)
unit under test (UUT) software

2
17
9




APPENDIX C: COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix may not
include all aspects of the command and control mission.

Cl. STRATEGIC AIR COMMAND

The Strategic Air Command (SAC) has a diversity of missions to support, such as com-
mand and control, war planning, intelligence support, and strategic weapons support. It
also develops a wide diversity of unrelated systems for these missions. For strategic
weaponry, SAC is a user agency, while for other areas it is both a developer and user.
War planning and intelligence systems are developed and maintained almost exclusively
by Air Force personnel, while often the development of information and mangement sys-
tems are primarily conducted by contractors with the maintenance shared by Air Force
and contractor personnel. The software developed for the warning functions ranges
from highly critical to noncritical. Software development practices for contractors are
controlled by the SOW,; internal maintenance is conducted in accordance with SAC
regulations. SAC computation systems tend to be data base and data processing inten-
sive, such as in the intelligence and war planning areas. The warning area includes
real-time control functions, and the command centers use C3I technology software.
SAC-conducted software testing practices and methods are standardized by SAC regula-
tions; however, there exists variability in their application, corresponding to the
differences in the software categories, criticality, and functional organizational practices.

C2. SAC MISSIONS

The missions performed by SAC include command and control, war planning, warning
and intelligence support. The general functions performed within these missions are as
follows.

Automated command control:

a. Collection of status-of-forces information on a near-real-time basis, using general- o

ized information on a near-resl-time basis and a generalized software system called N
3 the Force Management Information System. PG
. L
F.- b. All geographically dispersed SAC subordinate units are linked to headquarters
tj:: computers via a Data Transmission Subsystem. e
L. . ':.' “:-A
- c.  Command Post wall screen and printer displays provide data to the Commander- " -
;’.j in-Chief Strategic Air Command (CINCSAC) and the Battle Staff concerning avai- !—:}‘
lability of resources for Single Integrated Operational Plan (SIOP) execution. KA

C-1 R

.......

-

. T T T
T PR W W WS TSR Y. PIRPS. y |

- L . e e e e T T T e e e
O SR AP WL AL VI, WPUO AP . .. § - afaladsiada



|
i

SR i A W T e A S P AP B - T T R ENICIINEC el RIEEC il B 2ot~ Rindeldl o hieu e o - ~ -
PR T RN AT PRI I NN - b PR JE et i/t it et Basiitien 4 YR TN TR R Y TwTwy
5y
-N. ‘:‘
A
Progress of force activity can be monitored as events materialize. o
v --’-
d. Support is provided to the Single Tanker Missions for worldwide Tactical Air =5

Command (TAC) aircraft deployments.

P

[1-]
3 ST

Support is provided to the SAC aircraft contingency planning staff.

f. Software development support is provided for Numbered Air Force control Sys- =
tems.

AN
oy .

a

St

g. Software development support is provided for Airborne Command Post Force con-
trol Systems.

¢

o 4 ¥ B 2

PR
X o

War planning:
a. Planning of intercontinental ballistic missiles (ICBM), aircraft, and cruise missile
sorties against specified enemy targets is accomplished using intelligence estimates,
weapons capabilities, and geological factors.

b. Computer simulations permit "flying’’ sorties to determine success probability.

c. Extensive use of interactive graphics permit SAC and JSTPS planners to visualize
SIOP development.

d. Production of flight plan cassettes for unmanned cruise missiles.

e. Gaming techniques provide information on methods to improve the plan by pitting
the SIOP against the probable enemy plan.

Warning:

a. Computers embedded in various missile warning field sensors enable the detection
and/or tracking of hostile missile launches.

b.  Near-real-time displays on several display devices notify Command Post personnel
of endangered SAC resources and provide information needed for decisions of force

posturing, including launch for survival of aircraft.

c. An automated countdown to impact and checklists of required actions greatly
assist the decisionmaking process.

Intelligence support:

L et

D

Ve el . T S
. R ALY IR S .
STV P A, TR YR e s

AT NP FP RS e




d.

Online interactive analyst support is provided for collection management, photo-
graphic and electronic intelligence analysis and correlation, target development for
the National Target Base and maintenance of offensive and defensive orders-of-
battle on the SAC On-Line Analysis and Retrieval System (SOLARS).

Automated processing of electronic intelligence (ELINT) is accomplished to sup-
port the airborne reconnaissance program.

Development of processing systems provide for SC evaluation of airborne recon-
naissance collectors.

Use of graphic displays supports processing of scientific and technical data describ-
ing electronic emitter characteristics.

Map overlay plotting is used to support SIOP and ELINT production.

Automated support to reprogrammable airborne electronic warfare systems is pro-
vided.

Communications support and online analytical support for operational intelligence
analysts are provided.

Management support:

d.

The management information requirements of the HQ SAC stafl are supported
with 40 Air Force standard and 39 command-unique Management Information
Data Systems.

Remote terminals in te Headquarters building permit online support.

Computer output microfiche (COM) capability is available, as well as the
Honeywell Page Printing System.

Liaison is maintained with the Air Force Data Systems Design Center, manpower
and Personnel Center, Accounting and Finance Center, and other MAJCOMs.

(3. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software function in this appendix is based on responses to surveys performed
as part of software test handbook preparation, updated by a later survey during
preparation of these guidelines. This list has been reviewed by representatives of this
Air Foree mission. It 1s possible, however, that the list is not complete, or that another
individual from the same organization would have described or categorized the software
types differently.

-3

oo s o




(L A A S A St e “ i Nl At A S ARG 5 ¢ b o Bie GRS S, @Ol and ARG AL S Wl Sa AR S St AR BAA A uiell™ SIS Art Sl - Jaas e hiniy Sttt AU R iarad ) ~ T

The number that follows each software function is the assigned software category. This S
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in <
path 1 to determine candidate methodology selection. o
SOFTWARE FUNCTIONS CATEGORY L
controls and displays 14
data base management 12
interactive interface 14
mapping/plotting (graphics) 14 S
mission data preparation 12,1 S
sensor data processing 10 =
simulation (non-real-time) 11 "_"‘4
simulation (real-time) 11
tracking 6

“e v
o
Py
b':-'
- -
v “‘“.
-
.
e
..-'.. -
)

‘-“'v
NS

PERY
.

Q
-

e
0
ol
.
"




........

sl aAur N

APPENDIX D: SPACE

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix may not
include all aspeets of the command and control mission.

D1. SPACE DIVISION

The Space D:vision (SD) is a development agency for space-related systems, including
satellites, launch vehicles, and ground control and communications systems. SD relies
extensively on contractors to develop its systems and embedded software, which also
performs maintenance under follow-on contracts. Software development practices for
contractors are controlled by the SOW: and SD personnel, often coupled with technical
consultant contractors, monitor all development activities at all levels intensively. Fre-
quent reviews and technical direction are provided by this agency. A wide diversity of
software categories 1s developed by SD, including software for communications, satellite
control systems, prelaunch checkout and ground test systems, space vehicle avionics and
control, and system simulations. This site employs IV&V contractors to a greater
extent than any of the other sites surveyed. Software development practices are esta-
blished by Air Force regulation, defined by SOW, and, as a result, tend to be relatively
uniform among the development contractors. SD places great emphasis on the
thoroughness, sufficiency, and formality of contractor development practices.

D2. SD MISSION

The primary mission of SD is to acquire space-related systen::, which include satellites,
launch vehicles, and ground control and communications systems. Also, SD is responsi-
ble for managing and operating some elements of these acquired systems, such as the
Satellite Control Facility and the Vandenberg Launch Facility. The new Space Com-
mand will impact these operating activities in a way that is yet to be determined.

SD relies on eontractors to develop its systems, including the software within its gys-
tems. Development contractors for SD usually continue to maintain the software (if
maintenance is required).

Because systems and system software are not developed by SD, the main activity of its
personnel is to prepare RFPs, evaluate proposals, and conduct software management
survelllanee during the contraet,

Technical assistance in the software area is provided by Aerospace Corporation, a non-
profit systems engineering and technical direction contractor, providing technical consul-
tation to the Air Force. In addition, particular major programs are usually technically
assisted by IVAV contractors, who are selected competitively on a program-by-program
basis.

)
o, e .
O ""‘lfi l'. oot
. R Lo
—alaa Ak b

i
4
Ao

Y
[]

iy

1

-

h N
S
»

oJ e n
A

.
v',
1 ]
R

P ol ]
Ve A St

*

T




Y

-
v
A
st e
.."‘1 ‘<.‘
L] ".‘s -
wr (n“ <

Ve
;&_ﬂ _._‘4
.“r'..'« b
SN
PraS
3
rehdPR]
n~' ~.' -

’ .i
N
. -~' )
S
P R
. ...-'...“
. ,'_'
W

.....

AR AN At o

SN o R i A 3 T T e

D3. SOFTWARE DEVELOPMENT ENVIRONMENT

This section of the report will present an overview of four major types of SD software;
ground control and communications systems, prelaunch checkout and launch systems,
launch vehicle systems, and space vehicle systems. It will be evident that the software
developed by SD contractors is highly varied in character from category to category.
There is no technical detail concerning SD software that is true for all applications at
this site. Following these overviews, the report will focus primarily on those specific
applications encompassed in the survey.

SD relies on contractors using their own tools to develop and test software. Unlike the
aeronautical systems, space systems rely on development contractors to continue to
maintain the software through its life cycle; furthermore, for certain systems a high
degree of contractor IVEV is provided. The software characteristics within an entire
system and across systems vary substantially.

Ground Control and Communications (Overview). SD has acquired and is
acquiring systems and software that (1) control the attitudes and functioning of
unmanned satellites; (2) gather, reduce, record, and display data transmitted by satel-
lites; and (3) communicate and control manned space activities. Some examples of these
systems include the Satellite control Facility (SCF) at Sunnyvale, the Global Positioning
Satellites ground component, and the consolidated Space Operations Center (CSOC) at
Colorado Springs.

These systems have extensive amounts of software with major functions such as satellite
detection (both enemy and friendly), orbit determination, displays of status to controll-
ers, and satellite attitude correction and communication with one another and remote
sites. In fact, if either the CSOC or the SCF become disabled, they can perform each
other's functions (as can the Johnson Space Flight Center).

AMost of the software is written in higher order language {JOVIAL and HAL-S with some
FORTRAN for ('SOC and JOVIAL for SCF) and operates in near-real time. CSOC
software 1s maintained by Air Force personnel with substantive contractor support,
while SCF primarnily uses contractor maintenance. These systems are generically similar
to SD's reconnatssance and (3 system: but are larger in scope and more multipurpose.

Prelaunch Checkout and Launch System (Overview). A considerable investment
i software resides in prelaunch eheckout and ground launch systems that perform the
hooster and satellite ground checks before and during countdown and that perform the
range safety function during launch. For new vehicles, the existing facilities are
adapted, new software written, and additional factory checkout equipment moved to the
launch site.

The ~oftware requires a detailed understanding of the hardware being checked and the
svatem's function. These activities bear a similarity to SD's automatic test equipment

-2




software, but on a more focused scale since the checkout activity usually is confined to
the contractor's facility and the launch site.

Launch Vehicle Systems (Overview). Software in launch vehicle systems maintains
the stability of the vehicle during its flyout and takes inertial and other sensor informa-
tion in order to follow a preplanned launch trajectory. The software design is based on
a rigidly scheduled, cyclic sequence of events much like aircraft avionics software. This
software is usually small in program size, often fitting into a 16K-word memory and is
usually written in assembly language.

The development and testing of this software parallels that described for SD's avionics
software, except that it is simpler in function for the vehicles that launch unmanned
payloads.

Space Vehicle Systems (Overview). Space vehicle systems may be classified as
satellites that are manned, such as the Space Shuttle, and unmanned vehicles that are
used for exo-atmospheric transport, such as the inertial upper stage (IUS), and the Mini
Vehicle used in the Antisatellite System.

For the most part, manned satellites do not use digital computers, aside from some
recent systems that have small processors for attitude sensing and pointing and other
station-keeping responsibilities. More use of digital computers in future satellites is
expected, with emphasis for these computers on low power and fault-tolerant design.

The Space Shuttle has substantial onboard software, but this effort was primarily a
NASA effort and beyond the scope of this study.

Exo-atmospherie transport vehicles again are very similar to launch vehicles in their
software natures, with the exception of the additional feature of engine control, more
extensive maneut ering, and payload dispensing. Again, like aircraft avionics, simulation
using a hot heneh (SILTF-like facility) is performed during the design and testing to
establish the real-time performance.

Usually, more extensive IVAV is performed on these systems than on SD system. This
IVAV usually inelides independent testing on separate facilities, using separate tools by
IVAV contractors.

D1 CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix i1s based on responses to surveys per-
formed as part of software test handbook preparation, updated by a later survey during
preparation of these guidelines. This list has been reviewed by representatives of this
Air Foree mission. [t is possible, however, that the list is not complete, or that another
imvhividaal from the same organization would have described or categorized the software
types differently,

D-3

efnl Sl Bl Sl MaA Rl e S L N

KR
,. ’r =. " B
ALl

%

i‘xhh;“lj‘;‘j .

. [
[N :{ Vi

PR R

'
AL

L
ind
"

T '- )
e

!
i

PERPIR | S

i

skl

PO SR

.
«
2




R A A I B T e e R T A A B O RN At G A A At A ha BNl s A ad A RO A s e auLted Ty
- - LA AC RN AN S e Y

The number that follows each software function is the assigned software category. This
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in e
path 1 to determine candidate methodology selection. -
A. Equipment Checkout -- pre-launch checkout, equipment self-test .:j:
SOFTWARE FUNCTIONS CATEGORY _'::
automatic test equipment (ATE) 9
built-in-test (BIT)
central integrated test systems 9

|

B. Aerospace Defense -- threat detection and warning, threat evaluation

SOFTWARE FUNCTIONS CATEGORY

automatic processing 13
data base management 12

filtering and smoothing 9
guidance and control 3
message processing 8
mission data preparation 12
mission planning 15
real-time control 2
real-time executive 2
satellite impact prediction 5,7
satellite tracking 5
sensor processing 10
N :
) (sensor) tracking 5
A simulation 11
e situation notification 14
e space information correlation 1
O space situation analysis 15
:'_:l::_i task selection and displays 14
W
o
ey D-4
;‘:‘:' "."_'..'.. o _‘b B . '\. -~ *~ _;_:_ :.-"'-. ) ' _ \'
By e T e i R e e e R

. - P -t~ 13
LR T R A R S L SN e .
PR SRR VR SR O PP I A T




APPENDIX E: MISSION/FORCE MANAGEMENT _’ﬁ
The software usage described in this appendix is based on a representative site devoted ::i? :
largely to this mission. Therefore, the procedures covered in this appendix may not -
include all aspects of the command and control mission. s
E1. TACTICAL AIR COMMAND B
The Tactical Air Command (TAC) is the development and user agency for the major ::::Eft:?
Air Force tactical planning system, Computer Assisted Air Force Management System {f:«;:k:'
(CAFMS). The CAFMS is a single-function, highly interrelated automated processing i
system. The major output product of CAFMS is the air tasking order report. CAFMS k.
was developed by TAC personnel with some contractor assistance during the early PRI
requirements and design phases. Management, development, and maintenance of this = ~‘

system are well defined and uniquely adapted for its ongoing support. The system is
currently operational, but undergoes continual enhancements and incorporation of new
capabilities. The overall function of the CAFMS is quite critical, but few of its software o
components are considered to be more than moderately critical. The system does incor- T
porate some automated fallback provisions in case of failure, but redundancy of systems
function is not provided and reversion to manual operation is the ultimate fallback pro- e
vision. Testing practices are well defined and are incorporated as an integral part of a
version release management system developed by TAC specifically for CAFN.:". Testing -
is applied uniformly to all software components undergoing development. to the
differences in the software categories, criticality, and functional organizational practices.

52, TAC MISSIONS

The Tactical Air Command operates the Tactical Air Control Centers (TACC). The =

mission of TACC is to prepare, issue, and monitor the execution of coordinated orders -j:j:j.::}
for the employment of all forces available to the Air Force Component Commander. '.::-'.::-:'
The TACC is the operation center of the Tactical Air Control System (TACS). The RN
CAFMS was developed to augment the TACS with automated information processing, Y

storage, and display capabilities, and secure digital communications capabilities.

The primary mission area applicable to the TAC is Mission/Force Management. An
applicable secondary mission area is C3I, because the Mission/Force Management func- RN
tions are integrated into and communicates through a communications network. Y

3. SOFTWARE DEVELOPMENT ENVIRONMENT L 4

This section provides a summary of CAFMS and its software development environment.
TAC has no other tactical systems involving significant software development or
maintenance that were applicable to the survey. All elements of CAFMS are developed,
programmed, and controlled in the same manner and within the same organizational

E-1

.....
.....




structure. The CAFMS is essentially a heterogeneous system in this respect. All code is
implemented and tested according to the same standards and procedures. Therefore,
the CAFMS was the only system surveyed for TAC. It is discussed as a single entity in
this report, although in actuality it comprises a number of individual but interrelated
computer programs. Each of these programs is developed by a uniform and disciplined
management process.

Virtually all software effort on CAFMS is considered to be new development, as opposed
to maintenance of existing program elements. This development effort involves aug-
menting the existing system with additional functions and integrating them into the
overall design. It also involves major revisions to the system performance parameters,
such as the data base contents, to enhance the system or to accommodate new func-
tions. In this manner, the CAFMS is undergoing an evolutionary development process
to meet current tactical planning demands and also to adapt it to changes in its opera-
tional environment. All changes are accomplished in a phased approach.

Development of CAFMS requirements was shared about equally between Air Force per-
sonnel and a supporting contractor. Design and development through initial installation
were accomplished mainly by the Air Force, with only about 10% done under contract.
Subsequent development and maintenance are entirely the responsibility of TAC. The
system is currently undergoing initial operational test and evaluation.

Criticality factors for CAFMS include major mission impact, which probably is
representative of Air Force mission/force management systems. The confidence level
(see table B-1 in appendix B, for explanation) that applies to software development and
testing is level 2. Therefore, the development disciplines and level of software error
detection are comparable to many of the other major Air Force weapon systems, such as
command and control and avionics systems.

CAFMS Overview. CAFMS is designed primarily to build, disseminate, and monitor
the execution of the Air Tasking Order (ATO). There is also a requirement to build and
generate a variety of status reports and periodic and end-of-day summaries. CAFMS
reduces ATO preparation time. Since TACC is mobile, CAFMS must be capable of lim-
ited deployment. Therefore, there must be some ability to identify and change the
names, locations, etc., of subelements in the data base. Also, CAFMS must be capable
of processing classified information up to and including SECRET. CAFMS provides an
automated assist to the manual system for some of its key functions. The main operat-
ing centers are the 9th Air Force, and the USAF Tactical Air Warfare Center. CAFMS
i intended to fulfill the following requirements.

a. Inecrease capacity and accuracy in the display of air situation and mission progress
data.

E-2

«"n_‘\_‘.¥"“ EARA L%

- . " a - - P - -

o LT T X R e .
PRI JU PR £ B N U o o D ST NS O I Ry




| 6 BB AR A il i 1~ g a0l vl u e Shetut e it S el lhe* i fhe “u e "2 N2l R - ey £ Aa™ M e i 4 e M Rt Tt > ™ S n S S MY _'.“w_'C‘_W“_V_‘."_'T‘_‘J",\‘L‘T‘_'-.",'h";v‘-".\*‘_'\."_'.

System Description. CAFMS has the following six major system functions:

d.

Maintain status of bases and forces.

Significantly decrease the time required for preparation and dissemination of the
ATO.

Significantly decrease the time used in routine and clerical tasks associated with
mission planning.

Automatically generate and disseminate status and summary reports.

Provide terminals at the Control and Operations Centers, Air Support Operations
Centers, Wing Operations Centers, and TACC.

Maintain status of communications, weather, munitions, etc.

Provide an offline AUTODIN interface from the TACC to any AUTODIN user,
through the 470L System, TACS Communication System.

Startup. The startup function initializes all other system functions during initial
startup or during recovery. This initialization includes establishment of the sys-
tem environment; for example, communications assignments for participating
units, message alert routing, display access authorization, and system access
authorization. The data base is initialized either to start clean or, if after a
recovery, to start at the last saved position. Communications initialization facili-
tates hookup of all remote terminals and other communications links.

Console. At TACC, the console functions include the ability to build, update, and
disseminate the ATO. It also includes the automatic building of mission schedule
files to be used by current operations and report generation for each day’s activi-
ties. Console functions common to both the remote terminals and the TACC
include log-in to gain access to the system, display printing capability, review of
the ATO, update and delete capabilities for mission schedule and other files, input
validation, and the display function itself.

Communications.  CAFMS communications function provides the interface
between the TACC and external elements not equipped with a remote terminal.
This offline capability allows dissemination of messages (primarily ATO) through -
AUTODIN or the TACS internal teletypewriter (TTY) network.

System environment definition. This function provides the capability to maintain
and change or update the system environment as necessary. This includes a capa-
bility to receive a printed listing of any specified system environmental data (e.g.,

LR A
P
LR IAN

e,
oAy b e

=
(=]
‘,
’

TSl e
4 1,

Lt
ll-l
‘s

2



message routing table).

e. Message processing. The message processing function provides the capability to
prepare the JINTACCS ATO display formats for transmission to addressees not
possessing a remote terminal. This conversion process or reformatting includes the
insertion of header and trailer information. When the message has been format-
ted, it is stored in a message file and later output to the offline paper tape punch.

f. Shutdown. The shutdown function provides the capability for either an orderly
termination of all computer system functions or, if necessary, an emergency termi-
nation. An orderly shutdown includes notification to all consoles and remote ter-
minals that shutdown has started. All messages queued to the paper tape punch
are completed. The system environment and necessary data base information are
saved, as well as any recording information being generated. In accordance with
appropriate security directives, memory and disk are overwritten. In the case of
an emergency shutdown, only the memory and disk overwrite function are accom-
plished.

System Data Characteristics. For in-garrison operations, external data inputs are
received by voice communications to the TACC. These data are manually entered into A
the system through local consoles. In deployed operations, inputs are provided through

the remote terminals and/or voice communications. Functional user data inputs are as s
follows: ;_3_:.
e Aircraft/Aircrew Status i

Munitions Status

e Weather Status

.‘}:‘_'.j e Unit/Base status

e Air/Ground Situations

e Communications Link Status

The data outputs provided by CAFMS are the ATO message, Mission Schedule displays,
and Status/Report displays. The following displays are available in CAFMS:

e Air Tasking Order

L}

o . R . R R S
, PR S - e . . S, fe
Q‘ \ -. o ,~1’ .l- . .\ . ‘v .- --'.1. . ‘. . ., - - - . M B ] ~ ot . -
R el . <. .- h B 0 . - o L '. o K n LN PN T " -
LA R TR T R IR A S SR R SR A AR A




CalhaAi ‘W‘*‘T_‘.

TaTET e

T NS

N

. .
Ay
a2

T
oratalale
8
:

Y
*

e Mission schedule Displays
o Fighter/FAC/Support/Other
e Reconnaissance

e Status/Report Displays

e Unit/Base Status

Aircraft/Aircrew Status

Munitions Status

e Weather Status

Atreraft Losses

Unit Air Sortie Recap

Mission Air Sortie Recap

e Communication Circuits Status
e Strike packages

Standards and Documentation. The major regulations applicable to CAFMS
software development are the AFR 300 series and AFR 800-14, and DoD 7935.1-S,
Automated Data Systems Documentation Standard. Applicable computer program
documentation includes the following items:

System specification

Computer program design specification

Configuration management plan
e Data base specification
e Operator’s manual

e ['ser’s manual

2%l s .
A"""

E-5 -

.8
.4

}

s LS
"o lean _‘r!c_‘l_‘l




i E S AN A AT AP phal AR il oA ofl &= aKav ikl * o lil? ol LTS RS gug” Ao lia Valta® ot aav tan Bat Ses S0s e arn 008 &0 @ Aindaee
L)

........

-------

e Functional description

e Development test plan (one per module)

Programming standards and conventions identified for CAFMS provide coverage for
top-down structured development (analysis, design, and process), coding standards and
testing requirements (module, subsystem, and system testing).

E4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys per-
formed as part of software test handbook preparation, updated by a later survey during
preparation of these guidelines. This list has been reviewed by representatives of this
Air Force mission. It is possible, however, that the list is not complete, or that another
individual from the same organization would have described or categorized the software
types differently.

The number that follows each software function is the assigned software category. This

software category is 1 of 18 standard categories defined in section 2.3.2 and is used in
path 1 to determine candidate methodology selection.

SOFTWARE FUNCTIONS  CATEGORY

communication 10
controls and displays 14
data base management 12
mapping/plotting (graphics) 14
message processing 8
secure data processing 12,84
war planning 15
E-8

T T T N T W VW W wrwy
.

t

L DA ARNIEAY JU SR e
] . . - T, i v . . . . z
v v . . . ] « ¢ S e . . " . - .
‘ . . . N . 0 B a . “y
. . . . ‘I . .l .r » ‘; ] '. ’ E] ]
S e A
P . . R
W R | T c n

.
Al e




'_

':“_\

\"_j

?‘i&

N APPENDIX F: MISSILES

L

e

. f‘\- The software usage described in this appendix is based on a representative site devoted
s largely to this mission. Therefore, the procedures covered in this appendix may not
e include all aspects of the command and control mission.

Fi1. BALLISTIC MISSILE OFFICE

e The Ballistic Missile Office (BMO) is the responsible agency for ballistic missile systems,

;‘ including launch vehicles, and grouad control and communications systems. BMO relies
=y extensively on contractors to develop its systems and embedded software, which also
) performs maintenance under follow-on contracts. Software development practices for
-~ contractors are controlled by the SOW; and BMO personnel, often coupled with techni-
>

::.‘ : cal consultant contractors, monitor all development activities at all levels intensively.
3 Frequent reviews and technical direction are provided by this agency. A wide diversity
of software categories is developed by BMO, including software for communications,
missile control systems, prelaunch checkout and ground test systems, missile vehicle
i avionics and control, and system simulations. This site employs IV&V contractors io a
- great extent. Software development practices are established by Air Force regulation,
defined by SOW, and, as a result, tend to be relatively uniform among the development
contractors. BMO places great emphasis on the thoroughness, sufficiency, and formality
of contractor development practices.

P F2. BMO MISSION

.. The primary mission of BMO is to acquire ballistic missile-related systems, which

- include missiles, missile launch vehicles, and ground control and communications sys-

) tems. Also, BMO is responsible for managing and operating some elements of these

i acquired systems, such as the Satellite Control Facility and the Vandenberg Launch
Facility. The new BMO will impact these operating activities in a way that is yet to be
determined.

BMO relies on contractors to develop its systems, including the software within its sys-

tems. Development contractors for BMO usually continue to maintain the software (if
maintenance is required).

Jeeanse systems and systom software are not developed by BMO, the main activity of
it~ personnel s to prepare “'Ps, evaluate proposals, and conduct software management
‘ surveillance during the contract.

o Technieal assistance in the software area is provided by non-profit systems engineering
- and technieal direction contractors, providing technical consultation to the Air Force.
ey In addition. particnlar major programs are usually technically assisted by [IV&V contrac-
b tors, who are selected competitively on a program-by-program basis.




(A gl pVAS A AR SRS AR el u At gl - pRi ek Aat 4 SR Tl Sl il At el

F3. SOFTWARE DEVELOPMENT ENVIRONMENT

This section of the report will present an overview of four major types of BMO
software; ground control systems, prelaunch checkout systems, launch vehicle systems,
and missile systems. It will be evident that the software developed by BMO contractors
is highly varied in character from category to category. There is no technical detail con-
cerning BMO software that is true for all applications at this site. Following these over-
views, the report will focus primarily on those specific applications encompassed in the

survey.

BMO relies on contractors using their own tools to develop and test software. Unlike
the aeronautical systems, missile systems rely on development contractors to continue to
maintain the software through its life cycle; furthermore, for certain systems a high
degree of contractor IVEYV is provided. The software characteristics within an entire
system and across systems vary substantially.

Ground Control Systems (Overview). BMO has acquired and is acquiring systems
and software that control manned missile activities.

These systems have extensive amounts of software with major functions such as threat
detection, navigation and guidance, displays of status to controllers, and course correc-
tion and abort from remote sites.

Most of the software is written in higher order language (JOVIAL and HAL-S with some
FORTRAN and JOVIAL) and operates in near-real time. Some software is maintained
by Air Force personnel with substantive contractor support, while the remainder uses
contractor maintenance.

Prelaunch Checkout Systems (Overview). A considerable investment in software
resides in prelaunch checkout and ground launch systems that perform the missile
ground checks before and during countdown and that perform the range safety function
during launch. For new vehicles, the existing facilities are adapted, new software writ-
ten, and additional factory checkout equipment moved to the launch site.

The software requires a detailed understanding of the hardware being checked and the
system’s function. These activities bear a similarity to BMO’s automatic test equipment
software, but on a more focused scale since the checkout activity usually is confined to
the contractor’s facility and the launch site.

Launch Systems (Overview). Software in launch vehicle systems maintains the sta-
bility of the vehicle during its flyout and takes inertial and other sensor information in
order to follow a preplanned launch trajectory. The software design is based on a
rigidly scheduled, cyclic sequence of events much like aircraft avionics software. This
software is usually small in program size, often fitting into a 16K-word memory and is
usually written in assembly language.

P RS U o ing - auindh - i Sl el ~ el iUl il -l ek © e “mti iy ‘el e iR -l - - el e




e B A AN A S & g Ty W N W NS W  w o w o gm = w s w
e S 28 Bot A Ma g e 86 A A RN RLA e A1a Bt o g pach S0 %0 Ahedin Al st W AP S el SRl A i A A Sl A A AT TTATAT ST A T T ]

: ]
o ]
i =
:::;:: Missile Systems The development and testing of this software parallels that described -.:ﬁ'ﬁjj
- for avionics software, except that it is simpler in function for the ballistic missiles.

o o T o

- Again, like aircraft avionics, simulation using a hot bench (SILTT-like facility) is per- "

- formed during the design and testing to establish the real-time performance.
e .-'_'.“
- Usually, extensive IV&YV is performed on missile systems. This [V&V usually includes o

independent testing on separate facilities, using separate tools by IV&V contractors.

.

[ le
v 1
'

R : . L
[ P L P
\ 3 L Y .r‘ . *
2 I Gy

g

'
1
3 N
rr
Y L

F4. CATEGORIZATION OF SOFTWARE FUNCTIONS

4

The list of software functions in this appendix is based on responses to surveys per-
formed as part of software test handbook preparation, updated by a later survey during
preparation of these guidelines. This list has been reviewed by representatives of this
Air Force mission. It is possible, however, that the list is not complete, or that another
individual from the same organization would have described or categorized the software
types differently.

1
i

The number that follows each software function is the assigned software category. This
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in
path 1 to determine candidate methodology selection.

(RS

- e
I AR AN
e S

fy tete te Ty

S S gt

S
-3
F-3
{
L
o - s
N I - PO -~ : S -."'.. P
SN N e ' ' IR e ol “; . - .~ -

AR

- e A

A, , _\.";‘_-., K . St T . Lo R Y .
U VIS A TG VR 1 & L A I T A S U VST GRS . SO A TR TG TP UG VOIS




SOFTWARE FUNCTIONS

automatic test equipment (ATE)

built-in-test (BIT)
central integrated test systems

B. Missile Defense -- threat detection and warning, threat evaluation

SOFTWARE FUNCTIONS

automatic processing

data base management
filtering and smoothing
guidance and control
message processing
mission data preparation
mission planning

real-time control

real-time executive

SCNSOT Processing

(sensor) tracking
simulation

situation notification
missile information correlation
missile situation analysis
task selection and displays

A. Equipment Checkout -- pre-launch checkout, equipment self-test

CATEGORY

9
9
9

CATEGORY

13
12




MISSION
of
Rome Air Development Center

RADC plans and executes reseanch, development, test and
selected acquisition programs in suppornt of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppont within areas of technical competence
48 provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
{onospheric propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and

co .

:
2
3

-----------

...........................................
T S R S T W R T e et e =
....... R I

DURE RN AT NI S PR VAR WP L afasatalelataliniata w8

e

----

.........

- - : -‘ -7 -
AT e LT A




T T T R LV IV OV IO Vs




